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ABSTRACT
The boundary element method (BEM) is a numerical method for solving boundary-
value or initial-value problems formulated by use of boundary integral equations. In 
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the BEM, only the boundaries - that is, surfaces for 
three-dimensional problems or curves for two di-
mensional (2D) problems - of a problem domain 
need to be discretized. However the boundary el-
ement method (BEM) has been limited to solving 
problems with a few thousand degrees of freedom 
(DOFs) on a personal computer. This is because the 
conventional BEM, in general, produces dense and 
nonsymmetric matrices. The main idea of the fast 
multipole (FM) BEM is to employ iterative solvers 
to solve the BEM system of equations. Using this 
method we can solve models with more than 
one million equations on a laptop computer. In 
this paper, the governing equations for elasticity 
problems are reviewed first. Numerical examples 
are provided to demonstrate the accuracy and ef-
ficiencies of fast multipole method (FMM) for solv-
ing 2D elasticity problems. 

1. Introduction 
	    The finite element method (FEM) is the most 
significant numerical procedures commonly ap-
plied to analyses continuum mechanics models 
[1,2]. The boundary element method (BEM) is now 
established in many engineering disciplines as an 
alternative numerical technique to FEM. The attrac-
tion of BEM can be largely attributed to the reduc-
tion in dimensionality of the problem. On the other 
hand, this basic BEM behavior brings a loss gener-
ality in comparison with the FEM. The loss of partial 
generality of the BEM is balanced by its high ac-
curacy of results, especially for stress concentration 
problems. Namely, the solution at an internal point 
of analysed domain is exactly expressed though 
the boundary values and no discretization of do-
main is required. This is the main reason why the 
BEM is the most computational method for solu-
tion of crack problems [3]. For 2-D elasticity prob-
lems using fast multipole BEM, there are several 
approaches as well Greengard et al. [4] used a fast 
multipole formulation for directly solving the bi-
harmonic equations in 2-D elasticity. They applied 
Sherman’s complex variable formulation to solve 
the biharmonic equation and presented several 
interesting large-scale problems. Peirce and Napier 
[5] developed a spectral multipole approach,  that 
shares some common features with
the FMMs. In their approach, a set of background 
grids are generated and Taylor series expansions 
of the kernels are used to compute the integrals 
at the grid points. Interpolations of these values 

give the values at the collocation points. The al-
ternative stress and displacement models are the 
hybrid - Trefftz finite element formulations and 
reciprocity based FEM [6,7]. In recent years, more 
and more attention has been paid to researches on 
the meshless (or meshfree) method, which makes 
it a hot direction of computational mechanics 
[8,9]. The meshless method is t he approximation 
based on nodes; then the large deformation and 
crack growth problems can be simulated with the 
method without the re-meshing technique. The 
meshless method has some advantages over the 
traditional computational methods, such as FEM 
and BEM. In this paper, a new FMM BEM formula-
tion is presented for 2-D elasticity problems based 
on the direct BIE formulation. The displacement 
and traction kernels are represented using the two 
complex analytic functions in 2-D elasticity [10]. 
The FMM was developed to increase the efficiency 
of the boundary type numerical models by reduc-
ing computations for the interaction of far fields. 
However, near field integrals still have to be solved 
by classical BEM and the boundaries are also dis-
cretized by elements. The FMM improves consider-
ably numerical models based on the BEM especial-
ly for far field interaction. However, the near field 
interaction is solved by classical procedure and the 
models for composites reinforced by many inter-
acting fibres and particles require still very efficient 
computers.
 

2. Conventional Boundary Element Method
	 The basis of any boundary integral equation (BIE) 
formulation is rooted in classical elasticity theory as 
the reciprocal work theorem of Betti (1872) and the 
application of elastic potentials to satisfy equilibri-
um by Somigliana (1885). Much of the literature in 
the past twenty years of BIE formulations has made 
use of the method of weighted residuals. Although 
the BEM has enjoyed the reputation of easy mesh-
ing in modelling many problems with complicated 
geometries, its efficiency in solutions has been a 
serious problem for analyzing large-scale models.
	 The current discussion will treat isotropic elas-
tic continua (Fig.1). Equilibrium in the presence of 
body forces (per unit volume)  is given by the gra-
dient of the stress tensor v

ij
 as:

x
X 0

j

ij
i

2

2v
+ = (1)
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The strain tensor is defined as

Fig. 1: Deformed solid.

u u
2

1
, ,kl k l l kf = +] g

Taking Hook‘s  law for the material we obtain stress 
-strain relation

Cij ijkl klv f=

where tensor of material constants for an isotropic 
body is given as [3]

( )Cijkl ij kl ik jl il jkmd d n d d d d= + +

	 Substituting eqs. (3) and (2) into (1) we obtain 
the Navier equation of equilibrium in terms of the 
displacements

C u X 0,ijkl k l i+ =

in a general form or in the form valid only for an 
isotropic material

( )u u X 0, ,i kk k ki in m n+ + + =

	 The body surface can be split into two non-over-
laping parts depending on the boundary condi-
tions. Denote the part where displacements are 
prescribed by C

u
 and part where tractions are de-

scribed C
t
 (Fig. 2), then BC are given by following 

expressions:
Displacements BC

(2)

(3)

(4)

(5)

(6)

u y u y yi i u2! C= r] ]g g

Tractions BC

T y t y y n y yi
n

i ij j t2!v C= =r] ] ] ]g g g g

Displacements and tractions BC

u y u y yi i u2! C= r] ]g g

T y t y y n y yi
n

i ij j t2!v C= =r] ] ] ]g g g g

	 On Fig.3 is described elasticity problem. Equa-

tions (1) (2), (3) represents elasticity equations. The 
equations (4) and (5) are boundary conditions. 
	 Fundamental solutions are singular solutions to 
eq. (6) for the infinite region if body force is repre-
sented by the Dirac delta function.

Fig. 2: Boundary conditions.

Fig. 3: Elastic problem.

Introducing the Poisson number υ, the Lame con-
stant m (m=2no/(1-2o)) can be eliminated, and the 
Kelvin solution becomes [3]

.
( )

( )

( )U
r

r r
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=
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- +6 @
(10)

The traction vector is defined as a scalar product of 
stresses v

ij
 and normal vector n

j

( ) ( ) ( ) ( ) ( )t x x n x c n x xi ij j ijkl j klv f= = (11)

Then, the traction vector corresponding to funda-
mental displacements (10) has the form

.
( )

T U U n n U

r

r n r n r r n r

8 1

1 2

1 2

3

, , ,

, , , ,

ij ij k kj i k i kj k

j i i j ij i j k k

2

n m

r o

o

d
o

= + + =

=
-

-

- - +
-

]

b

g
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( )12

In the following we shall be concerned with two-
dimensional problems of elastostatics. The equilib-



Acta Mechanica Slovaca
Journal published by Faculty of Mechanical Engineering - Technical University of Košice

33

rium equation in 2-d problem is similar to that for 
3-d given by eq. (5). Constitutive equation can be 
written as

2ij ij ij kkv nf ad f= + ( )13

where the constant being defined as

s

for plane strain

.
2

2 for plane tressa

m

m n

nm=

+

*

3. Discretization of the Bie  
	 As it is generally not possible to compute the 
boundary integrals in the integral representations 
as well as to solve the boundary integral equations 
analytically, a numerical approach is adopted.
	 Recent advances, such as the use of isoparamet-
ric boundary elements, superior numerical integra-
tion schemes and the careful analytical treatment 
of singularity cases, have had a major impact on 
the competitiveness of the BEM in routine linear, or 
non-linear two- and three-dimensional analyses.
	 The numerical solution of a problem follows 
the usual procedures of the BEM. The boundary is 
discretized into elements using piecewise polyno-
mial approximations of the boundary geometry, 
displacements and tractions (Fig. 4). The simplest 
interpolation function is the constant approxima-
tion, where boundary displacements and tractions 
are constant over each element. In general, howev-
er, u

i
 and t

i 
can have a linear or higher-order varia-

tion. In addition, their polynomial behaviour need 
not be of the same order and, for instance, it may 
be more consistent to take t

i
 of one order less than 

u
i
, since a traction is given by the derivative of a 

displacement. In practice it is simpler to take both 
functions u

i
 and t

i
 of the same order.

Fig. 4: Discretization of the boundary S using constant element.

4. Fast Multipole Boundary Element Method  
	 For derivation FM BEM we use direct convention-
al boundary integral equation (CBIE) for 2-D elasto-
static  problems  [11]

( ) ( ) ( ) ( )

( ) ( ) ( )

,

,

C u U t

T u ds Sx

x x x y y

x y y y

ij j ij j
S

ij j 6 !

= -

-

6

@
#

( 4)1

where u
i
 and t

i
 are the displacement and traction, 

respectively; S the boundary of domain V (Fig. 5);    
C

ij
(x) coefficients that are equal to if S is smooth 

around x (d
ij
 is the Kronecker d); and i,j=1, 2 in 2-D 

cases. The kernel functions U
ij
(x,y) and T

ij
(x,y) are 

given by equations (10) and (12).

Fig. 5: Domain V and boundary S.

	 Two integrals in CBIE (14) can be represented in 
complex variables readily if we write the funda-
mental solution U

ij
(x,y) and T

ij
(x,y) in complex 

notation by using results in 2D elasticity.
	 Then complex variables, the displacement field 
U=U

1
+iU

2
 at a field point z because of a point of 

force P=P
1
+iP

2
 can be written as force   at source 

point z
0
  can be written as

( ) ( )
( )

log ( )

log ( )
( )

U z iU z P z z

z z
z z

P z z

4 1

1
1 2 0

0

0

0

rn l
l+ =

+
- - +

+ - +
-

-

5

@

!

2 ( 5)1

We can show that the first integral in CBEI can be 
written in following complex form by applying eq. 
(15) (with no body force)

( ) ( ) ( )u z D z D z
2

1
t u0 0 0= - ( 6)1

where u=u
1
+iu

2
 is the complex representation of 

the displacement field and boundary S is assumed 
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to be smooth at source point z
0
. In preceding 

equation:

( ) ( ) ( ) ( )

( ) ( ) ( )

,

,

D z U t dS

i U t dS

x y y y

x y y y

t j j
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S
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+

:

:

D
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#
#

( 7)1

representing the first integral with the U kernel in 
CBIE, and

( ) ( ) ( ) ( )

( ) ( ) ( )
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and representing the second integral with the T 
kernel in CBIE, where t=t

1
+it

2
 and n=n

1
+in

2
 are 

complex traction and normal, respectively

( 8)1

( , ) log ( )G z z z z
2

1
0 0

r
=- - ( 9)1

is the Green’s function (in complex form) for 2D po-
tential problems [11]. To derive the complex form 
hypersingular BIE (HBIE), we first note that the real 
variable traction t

i
 on boundary S is given by

( )t n u u u n, , ,i ij j ij k k i j j i jv md n= = + +6 @ ( 0)2

in which v
ij
 is the stress tensor and 

1 2

2
m

n

no
=

-  for 
plane/strain problems. It is interesting to note that 
this relation can be written in complex form as fol-
lows

( )t z
z

u
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u
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z

u
n2
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2
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2
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2
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+ +
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in which t, u and n are the complex traction, dis-
placement, and normal on boundary, S, respec-
tively. 
	 Applying (21), can be show HBIE can be written 
in the following complex form (with no body force)

( ) ( ) ( )t z F z F z
2

1
t u0 0 0= - ( )22

where
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represents the first integral with the K kernel in 
HBIE, and

( )
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represents the second integral with the H kernel 
in HBIE. Applying  eqs. (17) and (18), we obtain the 
following explicit results
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To show that complex variable CBIE is equivalent 
to real variable CBIE and complex variable HBIE 
is equivalent to real variable HBIE, we can simply 
introduce the polar system (r,i) with origin at z

0
; 

notice that

,
( )

z z re G
z z r

e

2

1

2

i
i

0

0r r
- = =

-
=

i
i-

l ( 7)2

and extract the real and imaginary parts of the re-
sults in complex variable BIEs.
The multipole expansions, local expansions and 
their translations related to Equation (17) in the 
new FM BEM are presented in [10].
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Fig. 6: A thick cylinder with pressure.

5. Numerical Examples  
	 Several numerical examples are given in this sec-
tion to demonstrate the accuracy and efficiency of 
the FM method for solving 2D elasticity problems. 
A first consider a thick cylinder under pressure 
loads (in the plane-strain case) as shown in Fig. 6. 
The inner pressure pi and outer pressure is p

0
. In 

the case studied, b=2a, p
i
=p

0
=p and Poisson’s 

ration o=0.3. We discretize the inner and outer 
boundaries with the same number of elements 
and run both the FM BEM code and conventional 
BEM code that also uses constant elements and 
analytical integrations. The conventional BEM code 
uses both the direct solver (LAPACK) and the itera-
tive solver (GMRES) for solving the linear system. 
For the FM BEM, the numbers of terms for both 
multipole and local expansions were set to 20, the 
maximum number of elements in a leaf to 20, and 
the tolerance for convergence of the solution to 
10−6. All the FM BEM results converged in about 3 
iterations without using any pre-conditioner in this 
example. The results of radial displacement com-
ponent ur and hoop stress σr at the inner bound-
ary using both the FM BEM and the conventional 
BEM (with the direct solver) as the total number of 
elements increases from 200 to 4800 (degrees of 
freedom from 400 to 9600) are evaluated. As we 
can see, the results for both FM BEM and conven-
tional BEM converge quickly to the exact solution 
[12] for the mesh with 360 constant elements with 
a relative error of less than 3%. The results continue 
to improve with the increase in the number of ele-
ments. This example shows that the FM BEM is very 
efficient compared with the conventional BEM. In 

addition, the FM BEM results are equally accurate 
as the conventional BEM results, and they are very 
stable with the increase in the model size.
	 In second example, we further study of accu-
racy of the FM method using stress concentration 
problem - square with a circular hole at centre, 
as shown in Fig. 7. The edge length of the square 
plate is a and radius of the hole is R=0.1a. The 
plate is loaded in the x-direction with a uniform 
load p, and Poisson’s ratio = 0.3 in this study. The 
maximum (at point A) and minimum (at point B) 
hoop stresses on the edge of the hole are sought 
(Fig. 7) using both FM BEM code and ANSYS, a fi-
nite element method (FEM) package. In the BEM 
models, numbers of boundary elements on the 
edge of the hole increase while that on the outer 
edges of the plate is kept at 100, except for the last 
BEM model in which 200 elements are used on the 
outer edges of the plate. The numbers of terms for 
both multipole and local expansions

Fig. 7: A square plate.

were set to 20, the maximum number of elements 
in a leaf to 100, and the tolerance for convergence 
to 10−6. All the FM BEM results converged in about 
20 iterations. In the FEM models, 4-node quadrilat-
eral elements are used in order to compare with 
the BEM models (which use constant boundary el-
ements). In the FEM meshes, smaller elements are 
used near the hole while larger elements are used 
near the outer boundaries of the plate.
	 Tab. 1 shows the comparison of the computed 
hoop stresses at points A and B. For an infinitely 
large plate with a hole, the hoop stress at point A is 
3p, while that at point B is − p [12]. The stress values 
for both FM BEM (with DOFs=1640) and FEM (with 
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DOFs=4522) converged quickly to around 3.22p at 
point A and −1.19p at point B.
	 Further increases in the numbers of elements 
provided little improvements in the results. This 
example demonstrates again that the results using 
FM BEM code are accurate and stable. It should be 
pointed out that the element types used for both 
the BEM and FEM in this study are the simplest ele-
ments available. If higher-order elements such as 
quadratic elements are used, a few hundred ele-
ments should be sufficient for both the BEM and 
FEM to achieve the same accuracy as reported in 
this example. Comparison of the CPU times used 
for the two BEM approaches are plotted in Fig. 8, 
which shows the significant advantage of the FM 
BEM compared with conventional BEM with either 
a direct or an interactive solver. For example, for 
model with 9600 DOF, the FM BEM used only 3s of 
the CPU time, whereas the conventional BEM  used 
1480 s wit direct solver  and 38 s with the interac-
tive solver.

Fig. 8: CPU time used by the conventional BEM and FM BEM.

6. Conclusion
	 A new FM BEM formulation for solving large-scale 
2-D elastostatic problems is presented in this paper 
based on the direct BIE and representations of the 
kernels with complex analytic functions. The new 
formulation is shown to be linked directly to the FM 
BEM for 2-D potential problems. As in the 2-D po-
tential case, complex potentials in the 2-D. elasticity 
are employed to represent the integrations of the 
kernels in the in the far field yielding a very compact 
formulation.
	 The resulting moment-to-moment, moment-to-
local translations are identical to those for the 2-D 
potential problems and are symmetrical about the 

two sets of moments. Thus, programming is straight-
forward for the new 2-D elasticity FM BEM based on 
any fast MP BEM code for 2-D potential problems. 
Two numerical examples are presented that clearly 
demonstrate the accuracy and efficiency of the de-
veloped FM BEM for solving 2-D elasticity problems. 
From this, it is clear that FM BEM is suitable for mod-
elling many large-scale problems.

Fast multipole BEM FEM

DOFs At point A At point B DOFs At point A At point B

560 3.215 -1.176 1206 3.148 -1.101

920 3.216 -1.183 4522 3.229 -1.185

1640 3.216 -1.185 9490 3.225 -1.187

3080 3.217 -1.188 38440 3.226 -1.192

7600 3.222 -1.190
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