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Some Aspects of Probability and Possi-
bility Theories for Numerical Analysis 
of Uncertain Mechanical Systems
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ABSTRACT
Our paper presents chosen traditional (based on 
probability theory) and non-traditional (based on 
possibility theory) computational tools for analysis 
of the material, geometric or loading uncertainties 
in mechanical structures. Uncertainties are intro-
duced as bounded possible values – intervals or 
as fuzzy sets, assuming possibility theory and as 
random parameters in the case of the probability 
theory. The main goal is to propose numerical al-
gorithms for interval modal and spectral FE com-
putations suggested by authors and their addition-
al implementation into fuzzy analysis and Monte 
Carlo method. 

INTRODUCTION 
In the last decade there has been an increased 
interest in the modeling and analysis of engineer-
ing systems under uncertainties. To obtain reliable 
results for the solutions of engineering problems, 
exact values for the parameters of the model equa-
tions should be available. In the reality, however, 
those values often can not be provided, and the 
models usually show a rather high degree of un-

certainty. Computational mechanics, for example, 
encoun-ters uncertainties in geometric, material 
and load parameters as well as in the model itself 
and in the analysis procedure too. For that reason, 
the responses, such as displacements, stresses, nat-
ural frequency, or other dynamic characteristics, 
will usually show some degree of uncertainty [8]. It 
means that the obtained result using one specific 
value as the most significant value for an uncertain 
parameter cannot be considered as representative 
for the whole spectrum of possible results.
It is generally known that probabilistic modeling 
and statistical analysis are well established for mod-
eling of mechanical systems with uncertainties. In 
addition, a number of non-probabilistic computa-
tional techniques have been proposed, e.g. fuzzy 
set theory [1, 8], interval approach [1, 3, 5, 6, 7], im-
precise probabilities [3] etc. The growing interest 
in these approaches originated from a criticism of 
the credibility of probabilistic approach when in-
put dates are insufficient. It is argued that the new 
non-probabilistic treatments could be more ap-
propriate in the modeling of the vagueness.

METHODS OF INTERVAL AND FUZZY ANALYSIS
Interval Analysis

Interval arithmetic was developed by Moore [6] 
while studying the propagation and control of 
truncation and rounding off the error, using float-
ing point arithmetic on a digital computer. Moore 
was able to generalize this work into the arithme-
tic independence of machine considera-tions. In 
this approach, an uncertain number is represented 
by an interval of real numbers. The interval num-
bers derived from the experimental data or expert 
knowledge can then take into account the uncer-
tainties in the model parameters, model inputs etc. 
By this technique, the complete information about 
the uncertainties in the model may be included 
and one can demonstrate how these uncertainties 
are processed by the calculation procedure INTLAB 
implemented in MATLAB [2].
The alternative avenue of the interval arithmetic 
is to use the Monte Carlo technique (MC) [8]. With 
the advent of recent computa-tional facilities, this 
method becomes attractive. The results are deter-
mined from the series of numerical analyses (ap-
proximately 1000 to 10000 iterations). It is recom-
mended to generate the random values with the 
uniform distribution.
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The comparison has been realized with the usage 
of midpoint residual vector rMidpoint and radius re-
sidual vector rResidual expressed in %, e.g.

During the solving of the particular tasks in the 
engineering practice using the interval arithmetic 
application on the solution of numerical math-
ematics and mechanical problems, the problem 
known as the overestimate effect is encountered. 
Its elimination is possible only in the case of meet-
ing the specific assumptions, mainly related to the 
time efficiency of the computing procedures. Now, 
we will try to analyze some solution approaches 
already used or proposed by the authors. We will 
consider the following methods:
Monte Carlo method (MC),
method of a solution evaluation in marginal 
values of interval parameters – infimum and supre-
mum (COM1),
method of a solution evaluation for all marginal 
values of interval parameters - all combinations of 
infimum and supremum (COM2),
method of infimum and supremum searching us-
ing some optimizing technique application (OPT),
direct application of the interval arithmetic us-
ing INTLAB MATLAB’s toolbox (INTL).
Monte Carlo method (MC) is a time consuming 
but reliable solution. Various combinations of the 
uncertain parameter deterministic values are gen-
erated and after the subsequent solution in the de-
terministic sense we obtain a complete set of re-
sults processed in an appropriate manner. Infimum 
and supremum calculation is following

where i = 1, ..., m and  ≈ m 5000÷10000.
Second method application (COM1), i.e. solution 
evaluation in marginal values of interval param-
eters has its physical meaning for many engineer-
ing problems. We consider an approach where the 
extreme output values are obtained by the appli-
cation of the extreme parameter values on input. 

That means that the infimum/supremum is ob-
tained using the deterministic analysis for infimum 
or supremum of input uncertain parameters. Inf-
sup calculation is

The third approach (COM2) which is also based on 
the set of the deterministic analyses appears as the 
more suitable one. The marginal interval param-
eter values are considered again but the infimums 
and supremums are also combined. The method 
provides satisfying results and can be marked as 
reliable, even if there is still a doubt about the ex-
istence of the extreme solution for the uncertain 
parameter inner values. Solution for two interval 
numbers p1 = <a1 b1> and p2 = <a2 b2> may be 
found by this computational way

The method of the infimum and supremum solu-
tion searching using the optimization techniques 
(OPT) is proposed by the authors as an alternative 
to the first and to the third method. It should elimi-
nate a big amount of analyses in the first method 
and also eliminates the problem with the possibil-
ity of the infimum and supremum existence inside 
of the interval parameters for the deterministic val-
ues. Computational process for two interval num-
bers p1 = <a1 b1>, p2 = <a2 b2> may be found as 
follows

The authors used also the interval arithmetic prin-
ciples implemented in INTLAB as another com-
puting tool. However, the overestimate effect 
mentioned above for the significant uncertainties 
causes considerable problems and the possibili-
ties of INTLAB using are therefore very restricted. 
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where          and          are the j-th eigenvalue with 
corresponding eigenvector,                      are of course 
the infimum and supremum of the mass and stiff-
ness matrices. The application of the classic in-
terval arithmetic for FE analysis is very limited. Its 
overestimation grows with the problem size (the 
dimension of the system matrices) and has not a 
physical foundation in the reality. Therefore, it is ef-
ficient to apply the previous numerical methods.
Application of the Monte Carlo method in IFEA 
may be realized as follows:
1. Generation of the random matrix (uniform distribu-

tion)

INTLAB using makes sense particularly for simple 
problems because of the results obtaining speed.
Interval Eigenvalues Finite Elements Analysis (IFEA)

The finite element method (FEM) [3, 5, 8] is a very 
popular tool for a complicated structural analysis. 
The ability to predict the behavior of a structure 
under static or dynamic loads is not only of a great 
scientific value, it is also very useful from an eco-
nomical point of view. A reliable FE analysis could 
reduce the need for prototype production and 
therefore significantly reduce the associated de-
sign validation cost.
It is sometimes very difficult to define a reliable FE 
model for realistic mechanical structures when a 
number of its physical properties is uncertain. Par-
ticularly, in the case of FE analysis, the mechanical 
properties of the used materials are very hard to 
predict, and therefore an important source of un-
certainty. Reliable vali-dation can only be based on 
an analysis which takes into account all uncertain-
ties that could cause this variability. It is the aim of 
this part to incorporate the most important uncer-
tainties in FE analysis.
According to the character of the uncertainty, we 
can define a structural uncertainty (geometrical 
and material parameters) and uncertainty in load 
(external forces, etc.). The structural uncertainty pa-
rameters are usually written into vector                    and 
the interval modal FE analysis may be formulated 
as follows

][ x,xx 

[ ( ) ( )]j j   K x M x v 0

j j([ ]-[ , ] [ ]) [ ]j j    K,K M,M v , v 0

jj , jj v,v
MMKK ,,,

MC 1 m[ ,..... ], (m 5000 100000)  X x x

2. Solution of

for i = 1, ..., m.

3. Infimum calculation of the i-th eigenvalue
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th
2inf (  row of )i COMi  λ

th
2sup (  row of )i COMi  λ

supremum calculation of the i-th eigenvalue

In the case of COM1, the numerical approach im-
plementation to IFEA is following:
infimum calculation

[ ( ) ( )]  ,    λ K x λ M x V 0

[ ( ) ( )]      λ K x λ M x V 0

supremum calculation

COM1 doesn’t give the correct results every time. 
We can obtain more proper results using COM2.
Its computational process for IFEA is:
1. Calculation of realizations matrix X2 , i.e. 2n inf-sup com-

binations

n
2 1[ ], (m 2 )COM m,..... X x x

_ 2 _ 2[ ( ) ( )]j COM j j COM j j    λ K x λ M x V 0

n - number of uncertain system parameters;
2. Solution of

for j = 1, ..., m.

3. Infimum calculation of the i-th eigenvalue

) of row (inf 2
th

COMi i λ

) of row (sup 2
th

COMi i λ

supremum calculation of the i-th eigenvalue

Generally, the infimum or supremum are not found 
only in the boundary points (COM1, COM2) but 
also in the inner domain of the solution set (OPT). 
To find the inf-sup solution using the approach 
OPT means to solve the optimizing problem de- 

(6)
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Fig. 1 a-level strategy with n-input levels and m-output levels, for a function of triangular fuzzy parameters

scribed as follows: 
infimum calculation of the i-th eigenvalue

supremum calculation of the i-th eigenvalue

It should be noted that it is possible to realize 
the searching process by a comparison optimiz-
ing method (e.g. Nelder-Mead simplex algorithm) 
or by using genetic algorithm as a robust tool of 
global optimization.
Fuzzy Set Approach

By Zadeh [5] was formulated the initial theory of 
fuzzy sets. A fuzzy set x is the set with boundar-
ies that are not sharply defined. A function, called 
membership function (MSF), signifies the degree to 
which each member of a domain X belongs to the 
fuzzy set x [3, 5, 7]. For a fuzzy variable xd<x1,x2>, 
(or xdx), the membership function is defined as 
n(x). If n(x) = 1, x is definitely a member of the x. 
If n(x) = 0, x is definitely not a member of the x. 
For every x with 0<n(x)<1, the membership is not 
certain. By fuzzy technique, the complete informa-
tion about the uncertainties in the model can be 
included and one can demonstrate how these un-
certainties are processed through the calculation 
procedure in MATLAB [8].
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Numerical calculation of the fuzzy sets is usually 
realised using so called discrete fuzzy number. It 
means each fuzzy number is divided into n interval 
numbers with a-level MSF, where ad<0,1>. On 
each level is applied one of the presented numeri-
cal approaches applicable for interval analysis. The 
whole computational procedure is presented on 
Fig. 1. More details about implementation of this 
fuzzy computational technique into FEA as fuzzy 
finite element analysis (FFEA) inhere in the relevant 
literature [1]-[3], [7].

PROBABILISTIC APPROACH
Probabilistic approach is based on the transforma-
tion of random variables. Lets X=(X1, ..., Xn)T be 
a n-dimensional random variable with joint prob-
ability distribution function fx (x1, ..., xn). We find 
joint probability distribution function gY (y1, ..., yn) 

of n-dimen-sional random variable Y=(Y1, ..., Yn)T, 
where Yj = hj (X1, ..., Xn),  j=1, ..., n; h = (h1, ..., hn)T 

is 1:1 transformation of X into Y.
Lets inverse function h-1:x=h-1(y) is diffe-rentiable 
and Jacobian of the transformation J,
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Probability density function fx(x) is for uniform dis-
tribution of random variable X on the interval (a1, 
a3), X~ Unif (a1, a3), Fig. 2.
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Probability density function fx(x) is for triangular 
distribution of random variable X on the interval 
(a1, a3), X ~ Tri (a1, a2, a3), Fig. 3.
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Calculation of the function gY  can be very difficult. 
The increasing of dimension of independent ran-
dom variable X means generally increasing of dif-
ficult ant time consuming too. We will use Monte 
Carlo method to create the random samples of 
variable Y. We can use next process by determina-
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where IY(y) is indicator function.
By using indicator function we can modify 3rd step. 
For generated values of vector Y we determine 
indicator function. If N is the required number of 
vectors, than point estimation of probability        :

intP̂

    point point
ˆ ˆ,P Er N P Er N 

An interval estimation       of probability:
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(8)
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tion these random samples of Y:
1. Generation of input vector X=(X1, ..., Xn)T  by us-
ing random number generator,
2. Obtain of output vector Y=(Y1, ..., Yn)T  by using
h=(h1, ..., hn)T transformation,
3. Saving file with Y or processing this vector imme-
diately,
4. repeat step from 1st to 3rd, until the required num-
ber of vectors Y is fulfilled.
The processing of output vectors is based on aims 
of analysis, for example a histogram, an estimation 
of parameters of distribution function fx (x1, ..., xn) 

sample mean, sample median, sample standard 
deviation etc.
The comparison of the shape of histogram with 
interval or fuzy set estimation is used in the next 
parts. Probability interpretation of output vector Y 

is often used. 
A probability P:
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We can estimate Y in probability sense properties.

NUMERICAL EXAMPLE
Vehicle dynamic models are often characterized 
by uncertain system parameters. Main goal of this 
example will be to explain difference between 
three different approaches to the analysis the influ-
ence of the uncertain parameters on the natural 
frequencies case of the model. Let’s consider the 
7-DOFs model of the agricultural tractor (Fig. 4) [4].
All input parameters without stiffness will be con-
stants. The stiffnesses are modeled as follows
1. Deterministic (constant values) [N/m]:

5 4 5 5
1 2 3 43.10 , 2.10 , 1.10 , 2.10 .k k k k   

2. Interval numbers:

5 5
1 2,9399.10 , 3,0601.10k 

4 4
2 1,9599.10 , 2,0401.10k 

5 5
3 0,9799.10 ,1,0201.10k 

5 5
4 1,9599.10 , 2,0401.10k 

3. Triangular fuzzy numbers:

5 5 5
1 2,9399.10 , 3.10 , 3,0601.10k 

4 4 4
2 1,9599.10 , 2.10 , 2,0401.10k 

5 5 5
3 0,9799.10 ,1.10 ,1,0201.10k 

5 5 5
4 1,9599.10 , 2.10 , 2,0401.10k 

4. Random variables:

Uniform distribution Unif (a, b):
k1 ~ Unif (2,9399.105, 3,0601.105),

k2 ~ Unif (1,9599.104, 2,0401.104)

k3 ~ Unif (0,9799.105, 1,0201.105),

k4 ~ Unif (1,9599.105, 2,0401.105);

Triangular distribution Tri (a, c, b):
k1 ~ Tri (2,9399.105, 3.105, 3,0601.105),

k2 ~ Tri (1,9599.104, 2.104, 2,0401.104),

k3 ~ Tri (0,9799.105, 105, 1,0201.105),

k4 ~ Tri (1,9599.105, 2.105, 2,0401.105).

The first three natural frequencies (eigenfre-quen-
cies) are presented in Tab. 1 (for models 
1–3). Result is presented in Tab. 2 for model number 
4. The first and third eigenfrequencies for triangular 
density functions and fuzzy approach are shown 
on Fig. 5a,b. First and third eigenfrequencies for 
uniform density functions are shown on Fig. 6a,b.

Fig. 4 The dynamic model of agricultural tractor

A soft histogram shift in left is caused by option 
of containers. “The teeth” can be decreasing by 
increasing number of samples (105 samples). The 
probability density function is approximately trian-
gular/rectangle for triangular/uniform proba-bility 
density function of input variables.
On the figure number 5a, b is obvious difference 
between fuzzy and probability approach results. 
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tion [10]

 

 

point point
point

point point
point

ˆ ˆ1
ˆ ,

ˆ ˆ1
ˆ

P P
P x

N

P P
P x

N





   
 
 
  
 

( 6)1

( 5)1

( 7)1

( 8)1

( 9)1

the interval estimation is:
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Constant model Interval model Fuzzy model

f
1

1,8606 <1,8419; 1,8791> <1,8419; 1,8606; 1,8792>
f

2
2,1126 <1,8419; 1,8791> <1,8419; 1,8606; 1,8792>

f
3

2,2508 <1,8419; 1,8791> <1,8419; 1,8606; 1,8792>

Tab. 1 The first three eigenfrequencies [Hz] are presented for constant, interval and fuzzy model

Tab. 2 The first three eigenfrequencies are presented for triangular probability density function

Natural Frequency Mean value Confi dence interval

99% 95% 90%

1. 1,86057 (1,8486; 1,8726) (1,8513; 1,8699) (1,8527; 1,8684)

2. 2,11261 (2,1000; 2,1252) (2,1029; 2,1223) (2,1044; 2,1208)

3. 2,25076 (2,2320; 2,2694) (2,2362; 2,2652) (2,2385; 2,2631)

Fig. 5a Fuzzy and triangular distribution

Fig. 5b Fuzzy and triangular distribution

Fig. 6a Uniform distribution

Fig. 6b Uniform distribution

There is visible difference in the range of interval 
for interpretations fuzzy versus probability too.
If we will obtain the results for interval approach 
and will extend interpretation of results in prob-
ability sense (interval number ≈ random variable 
with uniform distribution) then result have no uni-
form distribution.

CONCLUSION
The paper deals with the possibilities of the inter-
val, fuzzy a probability approaches in fundamen-

tal problems of the mechanics as are a modal and 
spectral FE analysis, mechanism kinematic analysis 
etc.. The presented comparison study of interval 
numbers, fuzzy set and probabilistic approaches 
from point of view results interpretation. Each 
of these accesses have itself advantage. Study is 
warned against risk of miss-interpretation of re-
sults, in the case interpretation of interval numbers 
as a realization of uniform distributed random vari-
able, or in the case interpretation triangular fuzzy 
number as a realization random variable with tri-
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angular probability density function.
The use of the presented numerical approaches 
provides a new possibility of the quality and reli-
ability appraisal of analyzed objects. Due to this 
numerical approach, we can analyze mechanical, 
technological, service and economic properties of 
the investigated structures more authentically.
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