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On Necessity and Possibility to Fully 
Exploitation of the Entire Information 
Inherent in Structural Analysis Data
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ABSTRACT
The necessity of condition-monitoring and supervising of structures will be justified 
under aspects of reliability, durability and safety as well as with regard to economi-
cal reasons. The achievements in measurement techniques enable the evolution of 
efficient monitoring systems. The prerequisite will be pointed out, to conceive such 
systems in close co-ordination with the mathematical modelling of the structure. This 
is inalienable with concern to system identification as generally the control-parame-
ters cannot be measured directly. They are to exploit on the basis of the mathemati-
cal model and the measurable structural response symptoms like displacements and 
strains, which inevitably requires solution of inverse problems. During service / opera-
tion many effects give rise for degradation of the structural resistance reducing the 
safety and the life-time as well. The results of system identification enable the determi-
nation of damage indicators, which provide information on the scale of degradation in 
the course of time to estimate the limit of service-life and the residual life-time. 

INTRODUCTION 
Supervising and condition-monitoring of technical structures must be regarded as an 
engineering service of ever increasing importance with regard to control durability, 
stability and safety as well as to estimate the life-span of structures. The nowadays 
complexity of new structures and strict demands on reliability and safety requires an 
intensive control of the structural response spectra during the entire life-time of struc-
tures. And furthermore it is unalienable to subject especially already existing structures 
to thorough inspections. Because during the time of existence and service/operation 
all and any kind of structures are more or less subjected to a permanent process of 
deterioration and degradation of stability, reducing the bearing capacity in the course 
of time and impairing the structural integrity [2], [4]. Therefore integrated strategies 
of health-monitoring and development of supervising systems gain high priority to 
assess and to guarantee the operability, reliability and safety of structures, to observe 
the process of deterioration and in consequence of structural degradation, in order to 
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timely detect damages, to appraise the probability 
of loosing operational ability, of hazardous failure 
and of the (residual) life-time. This is especially very 
important for structures with high risk-potentials 
in case of failure. The use of measurement tech-
niques is also necessary to control manufacturing 
and construction processes. It must be empha-
sised, that supervising of technical structures is to 
regard as an engineering service of ever increas-
ing importance. Without any doubt the economic 
importance of structural condition- monitoring is 
evident also [5]. The processes mentioned above 
lead to increasing financial expenditures in mea-
sures of maintenance. Limited financial resources 
exclude very often the immediate replacement of 
structures assumed to be in bad condition. Then 
condition - / health-monitoring provides informa-
tion whether retro-fitting might ensure safety and 
life-time. The aim is to avoid or at least to minimize 
costs and financial burden owing to:
operation, maintenance, repair, retrofitting or 
demolition and replacement,
unexpected loss of operational ability, 
sudden unexpected collapse, 
consequences of hazardous damage combined 
with injuries, probably followed by indemnifica-
tion. 
Fulfilling the previously given reasons for the ne-
cessity of structural monitoring demands the pro-
vision of a variety of data. These can be obtained 
by measurements under the presumption of total 
exploitation of the comprehensive information in-
herent included in the measured data.

MEASURING METHODS
The achievements in measurement techniques 
and the experiences in experimental solid me-
chanics provide useful tools and valuable support 
in non-destructive testing and damage analysis of 
structures. In this concern signal characterisation, 
decoding and interpretation of observed/mea-
sured phenomena have become important sub-
jects in engineering research and practice.
The nowadays available sensor~ and measuring 
techniques, the techniques of recording and trans-
mission of data combined with methods of far 
reaching automated data evaluation by means of 
powerful computer technique including compre-
hensive software based on proper mathematical/
numerical algorithms enable installation of com-

plex monitoring systems.
The bandwidth of the physical and technical pos-
sibilities to perform static and dynamic measure-
ments is large [6], reaching from satellite-based 
GPS to fibre-optical sensors like Bragg-gratings. An 
exemplary overview is presented below, not claim-
ing to convey a complete listing.
Geodetic~ / surveying techniques, satellite-
based techniques;
mechanical / electrical / sensor techniques;
optical~, electro-optical~, optical-fibre~, optical 
sensor techniques, BRAGG-gratings;
interferometric field techniques: holo~, shearo- 
graphy, ESPI, DIC, Moirè techniques, (photoelastic-
ity);
ultra-sonic~, acusto-emission~, thermo-stress~, 
X-ray~, tomography-techniques, etc.
Evolving monitoring~ and supervising-systems a 
combination of different methods and techniques 
as well as a variety of sensors and instrumentations 
comes into question as a rule. The choice depends 
on the kind of structure, the environmental and 
surrounding conditions, and not at least on the 
costs of installation, operation and maintenance of 
the system. It is of outmost importance to evolve 
the system in close cooperation and coordination 
with the engineers responsible for the mathemati-
cal modelling of the structure. The reasons are 
doubtlessly evident:
the measuring points are to select according to 
the results and details of the calculations concern-
ing the mathematical model in order to obtain 
powerful results of measurements,
the kind and the amount of data and informa-
tion, relevant for joined assessment, are to lay 
down with reference to the mathematical model,
the mutual comparison and correlation of results 
enable, if necessary, an adaptation of the theoreti-
cal model.

SYSTEM IDENTIFICATION
Comprehensive evaluation of the measured data 
is to regard as a task of system identification and 
leads in general to inverse problems, the solution 
of which is always based on the operator matrix 
ensued on the mathematical model.
The measurements furnish information on symp-
toms like displacements and vibration behaviour. 
These information is to complete by simultaneous 
recording environmental effects like temperature, 
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wind-loads, moisture etc. as those effects influence 
the structural response during the regular mea-
surements as well as on the long run. The symp-
toms and possibly additional à-priori information 
enable the diagnosis of the actual state of the 
structure and the assessment of its modifications 
and degradation in the course of time owing to 
time-depending effects like aging, fatigue, wear, 
creep and physical/chemical deteriorations. 
The measurements first of all yield analogue “sig-
nals”, either electrical, optical, acoustical, radiation 
and radio signals; however these signals do not 
come up to information necessary for relevant 
assessment of the actual state of the object con-
sidered. The control parameters like strength of 
materials, stiffness, compliance, natural values and 
natural frequencies, internal stress state, internal 
forces, which are necessary for comprehensive sys-
tem identification, cannot be measured directly. 
They are to calculate on the basis of the recorded 
signals. These are to digitize and to subject statis-
tical processes of adjustment, taking into account 
the defective quality of data because of noise-cor-
rupted signals, systematic errors, outliers, lost data 
etc. On the basis of the thus prepared data of the 
symptoms and the operator matrix, i.e. the math-
ematical model of the structure, the related con-
trol parameters can be calculated. Inverse prob-
lems are set up immediately. The resulting systems 
of equations are generally improperly posed, the 
operator matrices are not regular, positive defined 
square matrices and therefore the inverse cannot 
set up directly. The mathematical coherence of 
mathematically difficult inverse problems can be 
found e.g. in [1], [11].
To evaluate the measured data it is absolutely nec-
essary to dispose on a verified and validated refer-
ence model, generally the computational model 
of the structure. Concerning structures existing al-
ready since long time and in case of missing relat-
ed documents an adequate mathematical model 
is to evolve, because system identification based 
on measured displacements cogently demands 
actual computational reference models.

DEFINITION OF INVERSE PROBLEMS 
Any structural mechanical problem can be de-
scribed by the relation

with the output signals y, the input signals x and 
the system or operator-matrix A. In experimental 
mechanics let y denote the vector of effects: y = 
{yi}, id[1/M], the elements of which can be mea-
sured, i.e. either displacements, their gradients or 
strain, x denotes the vector of causes: x = {xk}, 
kd[1/N], like external loading, temperature, im-
pressed forces, constraints. The operator-matrix 
A(p), relates the input signal to the output signals 
and describes the structural problem depending 
on the vector p, which includes all information on 
the parameterised boundary conditions as well as 
on the geometry and the material properties, or 
in combination of both these vectors either the 
vector of the stiffness- or of compliance-parame-
ters respectively. Depending on the information 
sought either a forward or an inverse problem is 
to solve (Fig. 1).

  xpAy  (1)

operator matrix 
    A(p) 

input x 

output 

forward solution 

inverse solution 

output y 

input y 

Fig. 1 Forward/inverse solution

Vectors and matrices are the natural data structure 
for discrete signals and linear operations that oper-
ate on discrete data values. Once the forward prob-
lem is encoded in matrix form, the inverse problem 
is set immediately.
Provided A and x to be given, then eq. (1) describes 
a direct problem, which always leads to a well-de-
fined solution no matter, whether the mathemati-
cal model depicts the reality or not, provided a for-
ward solver is available. But three inverse problems 
are posed:
an inverse problem of cause identification, if A is 
given, y has been measured and the causes x are to 
determine; this is an inverse problem of the 1st kind;
an inverse problem of parameter identification, if 
x is given, y has been measured and parameters p 
included in matrix A shall be determined; this is an 
inverse problem of the 2nd kind;
a mixed inverse problem, if elements of the vectors 
of causes x and parameters p in A are unknown 
and perhaps the output signals y also partly.
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All inverse problems can be seen as fitting a “hy-
pothesised model to measured data in order to es-
timate unmeasured quantities”. Generally inverse 
problems are improperly posed, because the mod-
el-matrix A is not a square positive defined matrix 
and therefore cannot be inverted. Yet a pseudoin-
verse A-g can be found always, yielding an estimate 
of the respectively wanted information at least.

  .measg ypAx   (2)

Numerous methods for solving inverse problems 
are on hand like matrix-inversion methods, itera-
tive methods, sensitivity - matrix - based - method, 
artificial neural network methods, successive for-
ward simulation, Monte-Carlo approach, genetic 
algorithms etc.
As a matter of fact solutions of inverse problems 
are not unique from the first but they are ambigu-
ous, leading to “families” of solutions in some cases. 
Different solution-methods applied to the same 
mechanical problem and the same data can lead 
to completely different answers. And although 
the calculated results solve the initial equations 
describing the mechanical problem they do not 
render necessarily the problem to be analysed. 
Therefore it is of outmost importance to proof al-
ways, whether the selected solution is physically 
meaningful within the context of the engineering 
problem and to incorporate additional á-priori-
information on the subject considered, furnished 
by the experience of the analyst. However it must 
be carefully checked, whether additional informa-
tion probably bias the results and lead to incorrect 
conclusions. In this concern it must be pointed out, 
that the optimal solution depends on the problem 
to be analysed and that it is always in the respon-
sibility of the analyst, to justify the choice of the 
method and to identify the physical meaning of 
the results.

SENSITIVITY MATRIX 
The Sensitivity Matrix-based Method (SMM) [9], 
[10] can be categorised as an iterative method, 
which is especially useful in solving mixed inverse 
problems. The sensitivity matrix S is proposed 
relating finite changes of a vector x of unknown 
quantities to finite changes of the vector y of given 
quantities, obtained by measurements.
For estimated x(n-1) and x(n)=x(n-1) + Dx, x(n)=(xk

(n))T, 

kd[1/N] the forward solver

xAy  (3)

yields y(n-1) and y(n), y(n)=(yi
(n))T, id[1/M]. The rela-

tion between both these vectors can be formu-
lated as

               1 1 1 1         
     


yy y x x y S x x
x

(4)

where S denotes the Sensitivity Matrix, an (MxN)-
matrix, where M≠N.
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With concern to the vector y(meas)  the elements of 
which are taken by measurement an are different 
from the calculated values of vector y(n) based on 
estimates of x(n) the error between both these vec-
tor is to minimise.
The derivative of the quadratic functional

           2112 measmeasJ yxxSyyy    (6)

runs

 
         measTTJ yySxxSS

x



  110 

 (7)

yielding Jmin and thus an improved solution

        111 )(    yySSSxx measTT (8)

and introducing finite differences eq. (4) runs

xSy  (9)

or in matrix denotation
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As generally M≠N the Sensitivity Matrix S is not a 
regular, positive defined square matrix and thus an 
inverse problem is on hand either overdetermined 
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or underdetermined. In order to determine the 
pseudoinverse S-g, it can be fallen back upon one 
of the solution methods enumerated above.

ySx  g (10)

Different cases of unknown quantities in eq. (2) are 
to take into account. The output signals y (mea-
sured quantities) might be incomplete because 
e.g. of lost and erroneous data, the elements of the 
input-vector x might be completely or partly only 
unknown. For explanation the case y=(y1,y2)T, x = 
x2 may be considered, where the known quantities 
are denoted by the subscript 1, the unknown by 
subscript 2. then eq. (10) holds
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To explain the procedure the forward solver

  y A p x (1 )2

will be considered. The elements of the vector 
ymeas = {yi} have been obtained by measurement. 
Assuming the elements of vector x = {xk} and of 
the vector p = {pj} of the parameters are to be 
unknown quantities, i≠k≠j, then a mixed inverse 
problem is on hand and eq. (9) runs in component 
denotation
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Having ascertained the differential quotients and 
established the sensitivity matrix S, for an initial 
estimate (x(0),p(0))T a predicted vector y(0) and 
the difference Dy(0) = y(meas) - y(0) are to calculate. 

Fig. 2 Simply supported beam

With Dy(0) the solution of eq. (12a) yields the incre-
ments Dx(1) and Dp(1), further on improved values 
x(1)=x(0)+ Dx(1), p(1)=p(0)+ Dp(1). This procedure is to 
continue until Dy(n)=0 or ≤ f, a predefined toler-
ance.
If M≠N the system eq. (12) is improperly posed and 
either overdetermined or underdetermined. The 
method for solving the inverse problem may be 
chosen in the catalogue of solutions as for instance 
listed above. The Sensitivity Matrix-based Method 
(SMM) requires initial estimates for the unknown 
quantities. Proper estimation of these quantities 
accelerates the convergence of the calculations 
and is a presupposition to obtain results, which de-
pict the reality. Additional à-priori information and 
rational experience of the analyst is unalienable.
Combination of SMM and FEM

The SMM has proved to be a very advantageous 
method in combination with the FE-method as 
a forward solver, especially in structural system 
identification [7], [8]. This will exemplarily demon-
strated by applying both methods on simply sup-
ported beam (Fig. 2) without restricting the gen-
eral validity.
Based on FEM the mathematical modelling of the 
system runs

( a)12

  yHKf  ( 3)1

where K denotes the total stiffness matrix with the 
stiffness vector H, the vector of the nodal forces f.
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and y the vector of the nodal displacements

Eq. 13 is transformed now in such a formulation, 
that the stiffness matrix includes the displacement 
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vector y and the stiffness vector H explicitly

  HyKf  ˆ ( a)13

The matrix K can be split into two matrices

     KvKyK ˆˆˆ 

t

Assumed y=(v,φ)T and H to be unknown and col-
lected in a vector q eq. 10 now reads

-
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With the partial derivatives
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the sensitivity matrix is set up

 HV SSSS ,,  ( 5)1

with the sub-matrices depending on the unknown 
quantities.
It turns out, that

   
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and eq. (13) can be formulated as
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whereas eq. (13a) runs

On the theoretical supposition that for given f all 
displacements as well as the stiffness parameters 
might be unknown these quantities are estimated 
for the present: v(0), φ(0), H(0).
Then an estimated vector of external loads, eq. 
(17), reads

-
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the difference between given vector f and the esti-

mated vector f(0) holds
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On the other hand eq. (14) yields the difference
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Both the equations eq. 20 and eq. 21 lead to the 
final equation
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or regarding eq. (16)

      10 qSHKf  o ( a)22

the solution of which provides the elements of 
Dq(1) to improve the estimated quantities in a first 
iteration step.

     101 qqq  ( 3)2

The iterative procedure is to continue in n steps 
until |Df(n)|≤f, a predefined threshold.
Let f be given, the components of vector v be mea-
sured in all nodes, φ and H are unknown. With the 
estimates φ(0) and H(0) the matrices                     are 
set up. As v is known the increments Dv = 0. 
The matrix SH can be split into two sub-matrices,  
----------------------whereby the elements of matrix 
SH(o) are known because of given v. Then the final 
equation for calculating the increments reads
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where----------------------denotes the sensitivity ma-
trix.
Let components of the vectors of displacements v 
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R, E 

R(x, t*)

E(x, t*)

resistance of structure     R(x,
effects on structure       

normal distribution 

scale of life-time:       t* 

R(x, t*) – E(x, t*)  (t*) 

safety coefficient              (t*) 

(t*) 

R(x, t*) – E(x, t*) = 0: 

life-time t* 

failure 

and φ only partly and arbitrarily taken by measure-
ments. These known components are marked by 
1v, 1φ, the remaining unknown displacements by 
2v, 2φ,. These and the stiffness parameters H are to 
determine. The vector f is rearranged respectively 
as well as the matrices SV and SU, each of which 
split into two matrices 1SV, 2SV, 1SU, 2SU. The left side 
index indicates whether the matrix relates to given 
(1) or unknown (2) displacements.
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It must be considered that depending on the ra-
tio between known and unknown quantities the 
systems of eq.s (22), (24) and (25) respectively are 
in general improperly posed and therefore inverse 
solutions are required to obtain the pseudoinverse 
S(n)-g. 
The main intention of the presented consider-
ations is directed to the identification of the con-
trol parameters, - material properties, stiffness- or 
compliance parameters - on the basis of measured 
displacements. In this concern it must be pointed 
out that for different self-evident reasons a re-
stricted number of displacements only can be pro-
vided meaningful by measurement. The remaining 
unknown displacements are determined in the 
course of the evaluation process. In addition the 
external loads or at least some components the 
load vector f may be unknown as well as param-
eterised boundary conditions included in the op-
erator matrix of the mathematical model. On the 
other hand some elements of the vector H may be 
given. Thus the presented procedure enables the 
total exploitation of information, which are inher-
ent included in the data taken by measurements.

DAMAGE INDICATORS AND LIFE-TIME 
APPRAISAL 
During utilisation/operation the initial state of safe-
ty and the load-bearing-capacity will be reduced 
because of different reasons as already mentioned 
above. This leads to degradation of strength of 
materials and stiffness, which consequently leads 
towards reduction of the structural resistance R 

and also to a decrease of safety and life-span in the 
course of time [12], [3]. Structural failure occurs, if 
the external effects E - mainly the impressed loads 
- exceed the internal resistance R (Fig. 3). 
The processes of degradation and damage are 
time-depending. But they can be considered as 
quasi-static as they do not release inertia forces. 
The information on the degree of damage is includ-
ed in the global stiffness-matrix K and thus in the 
evolution of the stiffness Hn of the finite elements, 
determined in discrete time-intervals. The stiffness 
matrix depends on the measured displacements u 
and the degree of degradation d. The most com-
pact information on the damage however will be 
provided by the evolution of the natural values mm 
or natural frequencies ωm of K. 

Static analysis:  

Fig. 3 Life-time depending limit state concept

    Mmmmd 1,0.  ΦIK u 

K is projected on the unity-matrix I.
Dynamic analysis:  

    Mmmmd 1,02
,  ΦMK u 

K is projected on the mass-matrix M.
The natural vectors Um convey an insight of the spa-
tial distribution of damage. In the process of deg-
radation the natural values and natural frequencies 
are reduced; if finally one of them approaches 0, 
then det K = 0 and the integrity of the structure is 
violated and failure occurs.
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Fig. 4 Principle course of damage indicators 

Fig. 5 Deflection curves depending on progressive corrosion 

As damage indicator the definition 

has proved to be advantageous [13]. Any param-
eter, which includes information on damages, can 
be taken into consideration like for instance the 
natural values or the stiffness parameters of the 
finite elements.
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The maximum value of D yields the decisive infor-
mation on the state of damage.

0 : ,
0 1:

1:

D undamaged state
D partially damaged

D failure


 


The evolution of the indicator enables estimation 
of the life-time and the residual life-time respec-
tively (Fig. 4). If D exceeds an as tolerable accepted 
limit no matter how this limit might be defined the 
end of the service life is indicated.
By a simple theoretical example the procedure of 
damage indication will be demonstrated assuming 
the element no. 4 of the beam (Fig. 5) to be sub-
jected to corrosion. During the course of time the 
displacements u in the nodal points might have 
been measured. Fig. 5 shows for instance the de-
flection curves related to the progressive degrada- 

D = 1 

Dtol. 

D = 0 

failure of structure 

max. tolerable damage 

initial damage, 
deviation from rated value 

t0* ttol* tfail* 

appraisal of resid. life-time 
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tion of the beam caused by corrosion in element 
no. 4. 
The evaluation process of the measured data of 
displacements as described above yields the stiff-
ness parameter H4 and following the total stiffness 
matrix K(u,d), further on the related natural values 
mm and the damage indicators D as functions of 
life-time t*. The results are presented in Fig. 6.

CONCLUSION
It turns out the methods of experimental mechan-
ics combined with proper mathematical algo-
rithms for the evaluation of the metered data to 
be quite useful in non-destructive testing, health-
monitoring and damage assessment of aging 
structures. Certainly in practice additional informa-
tion and measures are necessary as for instance 
controlling the structure by appearance, control-

ling the boundary conditions and the state of sup-
ports, taking into account changes and effects of 
dead- and payload, environmental conditions like 
temperature and moisture. The goal of solving 
inverse problems is to determine from measured 
data the values of unmeasured and nonmeasur-
able deformations and further on the characteristic 
structural parameters in order to get reliable infor-
mation on the respective actual state of structures. 
In most cases the measured data are defective, 
whereby it must be differentiated between acci-
dental, systematic and proportional errors. Errone-
ous data affect the solutions essentially; therefore 
statistical processing of data is necessary to mini-
mise the defects. But depending on the kind and 
the source of errors this is not possible always or at 
least not completely.
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