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Stress and Strain Analysis of Curved 
Beams of Fibre Reinforced Plastic
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ABSTRACT
This paper extends the theory of Leipholz [2] about strongly curved beams to aniso-
tropic ber materials. For this purpose, the classical laminate theory, as proposed by 
Halpin [1] and others has been applied to curved beams. The laminate is made up 
of several orthotropic layers with a dened orientation (angle {), it gives the laminate 
anisotropic properties. The method presented here can determine stress in and across 
the ber as a result of internal forces. 

INTRODUCTION
Fiber-reinforced plastics found because of high exibility, high specic strength and sti-
ness of an increasingly prevalent. For the modern new material joining techniques 
such as bonding and rivets or loops have been pushed to the fore. Loops are often 
seen as one-dimensional but highly curved components, which are composed of sev-
eral dierently oriented orthotropic layers. 
Each layer consists of oriented bers made of glass or carbon, embedded in plastic 
(epoxy or polyester resin) as the matrix. The ber volume fraction, which increases the 
stiness and strength is, according to the manufacturing process 20-60 %. 
The problem of stress calculation of highly curved beams has been processed already 
by Leipholz (1969) [2] for isotropic materials. This paper will give an extension to ani-
sotropic materials.
Assumptions and Conditions

The investigation is based on the following assumptions:
The beam is loaded only by bending moment and axial force. The transversal bend-
ing moment, shear force and torque are not taken into account.
The laminate consists of several layers. The layer consists of directed parallel laments 
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surrounded by a matrix.
The mechanical behavior of the laminate de-
pends strongly from sequence and angle of la-
ments.
Fiber and matrix are considered as a homogene-
ous material with an ideal compound. Statements 
about stress and the adhesion between ber and 
matrix are not possible.
The generalized Hooke’s law for orthotropic ma-
terial is valid.
Bernoulli’s hypothesis is applied.
With these conditions, a relationship between 
beam stress resultants and strains will be devel-
oped, which allows to determine stress of each 
layer.

Hooke’s Law for Orthotropic Material

Orthotropic material are described in contrast to 
isotropic materials with four material constants [1]: 
E1 modulus of elasticity in ber direction
E2 modulus of elasticity perpendicular to ber direc-
tion
G12 shear modulus of elasticity in plane
y12 major Poisson Ratio
y21 minor Poisson Ratio
Hooke’s law describes the relationship of stress 
and strain, here Hooke’s law for plane stress state 
is given:
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The matrix Q is called the stiness matrix, the indices 
1 and 2 indicate here that it is related to the material 
axes. The vectors    and    are the stress respectively 
the strain vector both related to material axis. 
The relationship of strain and stress is given in equa-
tion (2). The matrix S is called compliance matrix.
Of course the relationship is Q-1 = S is valid. 

Stiness matrix as well as compliance matrix are sym-
metric, their structure indicates that no coupling be-
tween normal stress and shear strain occurs.

Transformations

To study the behavior of the entire laminate, both 
the stiffness matrix and the compliance matrix of a 
layer are transformed in a common coordinate sys-
tem.
This common coordinate system is called the x-y-
system. The angle between the common x-axis and 
the ber direction of the ith layer is {

i
.

The stress vector is transformed by equation (3). The 
superscript     denotes the x-y-system.vr
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Since we use engineering shear strain instead of 
tensor shear strain it is essential for ε a second trans-
formation relationship
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Due to Bernoulli’s hypothesis an assumption about 
the displacement ux can be made:

0 0 . (12)x
T

v = vrv 6 @

The transformed stiness and compliance matrices 
are still symmetric but fully populated. That is why 
a coupling of normal stress and shear strain can be 
observed.

Stress - Strain Relation of a Plane Beam

The beam theory assumes that stresses perpendicu-
lar to the axis of the beam in comparison to those 
in beam’s axis direction are negligible, therefor the 
stress vector is given by:
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The strain induced by a unit stress σx = 1 is the first
column of compliance matrix:

The strain f
x
 induced by a unit stress v

x
 is the el-

ement in the first column and the first row of the 
compliance matrix   in global coordinate system. 
Therefore the inverse of the matrix element      can 
be regarded as a generalized modulus of elasticity in 
x-direction of the ith layer.

N dA 0. (15)x= =v#

The i denotes that it is a stress for unit strain for the 
ith layer.

with

The strain is:

u d z, (16)
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LAMINATED CURVED BEAM
It is known, that in highly curved beam loaded by 
pure bending the neutral axis does not coincides 
with the centroid. Therefore the first question is to 
find out the zero strain position. For this purpose in 
Fig. 1 a differential piece of the beam is shown.
The designations are:
Rs - distance of center of curvature to centroid,
R - distance of center of curvature to neutral axis,
t - coordinate starting at center of curvature,
    - coordinate in t direction, staring at neutral axis,
9d{ - increase of curvature due to bending mo-
ment,
b - width of beam.

Coordinate System

The origin of the coordinate t is the center of curva-
ture. R is the distance from the center of curvature 
to the neutral axis. The origin of the local beam co-
ordinate system is the neutral axis of a pure bending 
loaded beam.   is directed outwards, x is following 
the beam axis. The fiber angle { is measured from 
the x-axis.

Fig. 1 Bending of highly curved beam

Determination of Position of Neutral Axis

Starting point is the assumption that a pure bend-
ing moment and no axial force is acting. The axial 
force is:
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With equation (3) to (8) the transformation of stiff-
ness and compliance matrix will be performed:
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so that the stress becomes:
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The term        and remains constant and is shifted in 
front of the summation, the term     remains constant 
for one layer and is shifted in front of the integral:
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Strain is simply spoken

old length
new length old length
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The first integral gives the cross section area Ai of the 
ith layer, the second leads to
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with Ri the borders of layer i. This leads to the equa-
tion to determine R:
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The radius R of neutral axis gives:
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STRESS RESULTANTS AS INTEGRAL OF STRESS
Axial Force

The axial force of a beam is
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using Hooke’s law in connection with equation (14) 
leads to
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The strain f
x
 is composed of a constant share f

x0
 

and a variable portion due to the increase in curva-
ture l. For this second part it is taken into account 
that also the “old length”  is variable with   . Taking 
this into account we obtain
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Introducing equation (24) in equation (23) leads to

The sum is divided into two parts:

The first part is:

in the second part    will be replaced by t-R and
9d{ and R taken before the summation:

The axial force of one layer is the integral over the 
layer area, the axial force of the laminate the sum-
mation over all layers:

Now you can see that the expression is zero, because 
it was the condition which was used to determine R.
This allows to calculate the axial force:

d
d z

,x
O

=f
{ t

{ r

The term

zr

zr



112 VOLUME 14, No. 2,  2010

M d bR E
R

d .y x
i

2

O {=
-

t

t
t

^ h/ #

lnM d bR E
2
1 2R R (32)y x

i 2 2

R

R

DD

i 1

1

O {= - +t t t
+

8 B

1 2 34444444 4444444
/

.DD bR E
2
1 2R R ln (33)x

i 2 2

R

R

i 1

1

= - +t t t
+

8 B/

,

and

.

AA
n (35)

d
DD

M
(36)

y

x0

O

=

=

f

{

.E R d R
R

(37)x x
i

x0 O= +
-

v f
t

{
t

t
c m

bR E
R

d .x0 x
i -

f
t

t
t/ #

M d DD. (34)y O= {

is called axial stiffness.

BENDING MOMENT MY
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Introducing equation (24) and Hooke’s law into qua-
tion (30) leads to

Rearranging and substituting    = t-R leads to

The integral has two parts, the first is

This part is zero because of equation (19). Therefore 
bending moment is:

and leads to

The bending stiness is:

With equation (32) and equation (33) the bending 
moment gives:

INTERNAL FORCES STRAIN RELATIONSHIP
Equations (30) describes the relations between the 
forces and strain, equation (34) of bending moment 

and curvature. There is no coupling between axial 
force and bending or between bending moment 
and strain. This is due the fact that the origin of co-
ordinate system was not put in the geometric cen-
troid of the cross section but in the neutral axis of a 
pure bending loaded beam. 
Strain in neutral axis and 9d{ is computed by:

The normal stress v
x
 is calculated by equation (24) 

in combination with Hooke’s law:

Stresses in and perpendicular to ber and shear stress 
are calculated by equation (3). The stresses in mate-
rial system are the basic to compute Tsai-Wu’s failure 
criteria criterion [1] or Puck’s failure criteria [3] for as-
sessing the strength.

CONCLUSION
A loop consist of 8 layers of glas ber and epoxy 
resin with the symmetrical stacking: 0/90/45/-45/-
45/45/90/0. Each layer of the beam has the thick-
ness of ti = 0:5 mm, the inner radius is ri = 3 mm.
The loading is axial force of N = 1000 N and bending 
moment My = 6 000 Nmm. The material is described 
with:
ber volume ratio {

y
 = 0,6,

modulus of elasticity in ber direction:
E

1 
= 44 500 N/mm2,

modulus of elasticity perpendicular to ber direction:
E

2 = 12 500 N/mm2,
shear modulus: G

12
 =6000 N/mm2,

major Poisson’s ratio: y
12

=0,28,
width b = 10 mm.
Evaluation of equation (21) gives R = 4,61 mm. The 
axial stiness according equation (28) gives AA = 8,8 
105 N, the bending stiness DD = 1,6037 106 Nmm2. 
In Fig. 2 the stresses v

1
, v

2
 and x

12
 in the material 

system over the radius are shown. In the 0-degree 
layers (rst and last layer) you can see the non-linear 
course of the stress (v

1
) is evident. In the 90  layers 

(second and seventh layer) there are only stresses 
perpendicular to the ber direction (v

2
) while the 
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stress in ber direction and shear stress vanish.

CONCLUSION
In the present paper the generalization of the the-
ory of isotropic curved beams has been extended 
to anisotropic materials. Of special signi cance is the 
choice of the origin of the coordinate system. If one 
put it in the neutral axis no coupling of normal force 
and bending moment occurs.
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