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Active Vibration Control of Aluminium 
Flexible Structure Using Optimal Con-
troller
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ABSTRACT
Vibrations of aluminium flexible structure are actively controlled by using piezoelectric 
actuators. In active vibration control the control device has varying properties for con-
trolling vibrations. In this active control system, the vibrations are sensed by the sensors 
which are placed at free end of the beam and these sensed signals are given as input to 
the control system. In turn, out put in the form of voltage is given to the piezoelectric 
actuator to control the vibrations by an optimal controller. Thus vibrations are controlled 
actively. In this paper, an optimal controller called Linear Quadratic Regulator has been 
designed involving minimization of the total energy of the beam along the length of 
the beam to control the vibrations of aluminium flexible beam. It is concluded that the 
vibrations due to step excitation are effectively controlled by optimal controller by vary-
ing weighting matrices.

NOMENCLATURE
F  External force acting in [N]
y  Deflection in [m]
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M  Bending moment of the beam in [Nm]
V  Shear force of the beam in [N]
m  Mass of the beam in [kg]
a  Acceleration of the beam in [m/s2]
ρ  Mass density in [kg/m3]
A  Area of cross section of the beam in [m2]
F

y
  Forces along y-axis in [N]

E  Young’s modulus in [N/m2]
I  Moment of inertia in [m4]
ε

i
  Strain along ‘i‘ th direction

d
ij
  Piezoelectric charge constant in [m/V]

t
p  

Thickness of piezoelectric patch in [m]
t

b
  Thickness of the beam in [m]

L  Length of the beam in [m]
w

b
 Width of beam in [m]

w
p
 Width of piezoelectric patch in [m]

r
1
, r

2
 Locations of the patch from the fixed end

U  Voltage input to the piezoelectric patch in [V]
σ  Stress in the piezoelectric patch in [N/m2]
q

i 
 Time dependent solution of the deflection for  

  the ‘i’ th mode
Ф

i
  Mode shape for the ‘i’ th mode

δ
ij
  Kronecker delta function

r
w
  Length from the fixed end at which load act 
 ing in [m]

ζ
i 
 Damping ratio for the ‘i’ th mode

λ  Roots of the mode shape
ω  Natural frequency in [rad/sec]
δ  Logarithmic decrement
J  Cost function
Matrices
[K] Controller gain matrix
[R] Controller weighting matrix
[Q] State weighing matrix
Subscripts
b  Indicating Beam
p  Indicating piezoelectric patch
i  Indicating ‘i’ th mode

INTRODUCTION
Flexible structure vibrations are controlled actively 
by using piezoelectric actuators. In this active con-
trol system, the vibrations are sensed by the sensors 
which are placed at free end of the beam. These 
sensed signals are given as input to the control sys-
tem and the out put of the control system is in the 
form of voltage signal which is given to the piezo-
electric actuator to damp the vibrations of the struc-
ture. Linear Quadratic Regulator (LQR) is used as an 
optimal controller to damp the vibrations through-

out the length of the structure actively. When force 
is given as input to the beam, then the beam under-
goes unsteady vibrations. These disturbances can be 
damped by designing the Optimal LQR which can 
actively control the vibrations of the beam. The LQR 
design includes optimal control law, which involves 
minimization of the total energy along the length of 
the beam. A code is developed using Matlab 6.1 for 
finding the controller gain matrix. In active vibration 
control structural response is controlled by adding 
controlling elements to structure like piezoelectric 
actuators. For active control of vibrations control 
devices properties are varying according to the 
changes in state. 
Young Kyu Kang, Hyun Chul Park, Jaehawan Kim 
and Seung-Bok Choi [1] investigated the interaction 
between active and passive vibration control char-
acteristics by optimal control theory using piezo-
electric actuators. X.Q. Peng, K.Y.Lam and G.R. Liu [2] 
proposed finite element third order theory for active 
position control of composite beams. A special type 
of collocated feedback controller for smart structure 
was proposed by H.R.Pota, S.O.Reza Moheimani and 
Matthew Smith [3]. They presented the way in which 
resonant amplitudes of vibrations are controlled by 
using piezoelectric actuators and sensors. Reza Mo-
heimani, Hemanshu R.Pota and Ian R Petersen [4] 
presented the application of piezoelectric materials 
in active control of unwanted vibrations in flexible 
structure using spatial control. Dunant Halim and 
S.O.Reza Moheimani [5] designed a feedback con-
troller to suppress vibrations of a flexible beam. The 
suppression is based on the spatial H2 norm. Y.Y. 
Lee and J. Yao [6] proposed the way in which piezo-
electric sensors and actuators are used for structural 
vibrations suppression. The independent modal 
space control approach is employed by them for 
the controller design. S.O Reza Moheimani [7] pro-
posed the recent innovations in vibration damping 
and control using shunted piezoelectric transduc-
ers. A. Baz and S. Poh [8] proposed the utilization of 
piezoelectric actuators in controlling the structural 
vibrations of flexible beams. In this work vibrations 
of flexible structures caused by disturbing forces are 
actively controlled by using piezoelectric actuators. 
Optimal LQR is designed for controlling the vibra-
tions of the structure. Controller is designed based 
on the optimal control law which is going to mini-
mize the cost function. 
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ACTIVE VIBRATION CONTROL
In passive vibration control, the control devices have 
constant properties. But in active vibration control, 
the control devices are having varying properties 
which can control the vibrations actively. Here, the 
vibrations are sensed by sensors placed at the free 
end of the beam. The deflections are given as input 
to the controller. The controller calculates the con-
trolling voltages required for the piezoelectric patch 
to control vibrations. The calculated voltages are 
given as inputs to the piezoelectric patches. Fig.1 
shows a flexible aluminium cantilever beam with 
sensor, controller and piezoelectric actuators. Volt-
age required to the piezoelectric (PZT) actuator for 
vibration control, is connected by feedback loop as 
shown in Fig. 2.

Fig. 1 Cantilever beam with Active Control System

Fig. 2 Linear quadratic regulator

ASSUMPTIONS
Following are the idealizations made for the active 
vibration control of flexible structures. 
Beam is subjected to pure bending and the mate-
rial is isotropic and homogeneous.
The material obeys Hooke’s law and the beam is 
initially straight with a cross section that is constant 
throughout the beam length and cross sections of 
the beam remain plane during bending.
Damping effect due to bonding layer is not con-
sidered.
Table 1 shows the parameters of the beam and PZT 
actuator considered. 

Aluminum Beam parameters Piezoelectric material 

parameters

Beam material Aluminum
Piezoelectric 

material
PZT

Young’s 
Modulus

6,7x1010 
[N/m2]

Young’s 
Modulus

6,7x1010 
[N/m2]

Beam 
length

0,775 [m]
Patch  
length

0,07 [m]

Beam width 
w

b

0,05 [m]
Patch width 

w
b

0,025 [m]

Beam thick-
ness t

b

0,00589 [m]
Patch thick-

ness t
b
 

1x10-3 [m]

Mass den-
sity

2700 
[kg.m-3]

Charge 
Constant, 

d31

-210x10-12 
[m.v-1]

Moment 
of Inertia, 
I=w

b
t

b
3/12

8,51401e-10 
[m4]

Voltage 
Constant, 

g31

-11,5x10-3 
[m.N-1]

Area of 
cross secti-
on of beam, 

A= w
b
 t

b

0,0002945 
[m2]

Coupling 
Coeffi  cient

0,34

Tab.1 Parameters of Aluminum beam and PZT patch

BERNOULLI-EULER BEAM EQUATION
By considering f(r) external force acting on the Ber-
noulli-Euler beam equation of beam is given by,

Active vibration control of flexible structures is done 
by using piezoelectric actuators. When an electric 
voltage is applied to piezoelectric patch, it produces 
strain both in longitudinal and transverse directions. 
Piezoelectric strain constant is the ratio of devel-
oped free strain to the applied electric field. Of par-
ticular importance are the strain constants d

33
, d

31
 

and d
32

.  The subscript d
ij
 implies that the voltage is 

applied or charge is collected in the ‘i’ direction for 
displacement or force in the j direction. While the 
transducer is in the actuator mode resultant trans-
verse strains is given by,

El
r

y
A

t

y
f r 14

4

2

2

2

2

2

2
+ =t^ ^ ^h h h

.

t

d
U r, t 2

1 31

p
=f c ^ ^m h h



Acta Mechanica Slovaca
Journal published by Faculty of Mechanical Engineering - Technical University of Košice

67

Stress induced in the piezoelectric patch along the 
length.

E
t

E d
U r, t 3p

p 31

p

= =v f c ^ ^m h h

Bending moment due to the stress along length of 
the piezoelectric patch is given by,

M
t

E d
U r, t w y x dy

4

M C U r, t , where C
2
1 E d w t t

p
p
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p
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ASSUMED MODES APPROACH
When the piezoelectric actuator is patched on the 
beam, then the equation of beam is given by,
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r
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54
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^
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h
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The main idea of the assumed modes approach is to 
expand the function y(r, t) as an infinite series in the 
following form

y r, t q t r 6i i

i 1

= z

3

=

^ ^ ^ ^h h h h/

where Ф
i
(t) are the eigen functions or mode shapes 

satisfying ordinary differential equations and boun-
dary conditions of the cantilever beam. Substituting 
y(r, t) into the equation (5) then multiplying the re-
sulting equation by Φ

j
(r) and integrating over [0,L] 

we have,

El r q t r dr

A r q t r dr 7

f r, t r dr C
r
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From these orthogonal conditions and by using the 
following equation beam equation derived.

r r 8i
4

i=z m zllll ^ ^ ^h h h

Bernoulli-Euler equation is modified to the follow-
ing form,

AL q t q t r F t

9

C r r U t

3
i

2
i i w

p i 1 i 2

+ = +
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z z
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Equation (9) is the equation of beam is a function 
of time variable. When the beam vibrations are 
not controlled then the controller term will not be 
there in the equilibrium equation. When the modal 
damping of the beam considered then the equation 
(9) transformed to the following equation form.

AL q t 2 q q t
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3
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MODE SHAPE
Beam will be having infinite number of natural 
frequencies. But only first four natural frequencies 
the beams are considered and actively controlled. 
Boundary conditions of cantilever beam are given 
by,
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After substituting the boundary conditions from 
equation (11) into the solution of differential equa-
tion (8), then mode shapes are given by following 
equation
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For finding mode shapes, the value of λi is to be cal-
culated. As shear force at the free end of the beam is 
zero, the equation (12) is transformed into following 
equation (13) form

cos cos1 L L 0 13i i+ =m m ^ h

NATURAL FREQUENCIES OF THE BEAM
The natural frequency of the beam depends on the 
Young’s Modulus of the beam, moment of inertia of 
the beam, mass density of the beam, cross sectional 
area of the beam and λi which is a factor depending 
on mode shape of the beam. The natural frequency 
of the beam is given by

A
El 141 i

2=~
t

m ^ h

The natural frequencies using ANSYS software are 
determined to compare the analytical values deter-
mined using Equation (14). The first natural frequen-
cies of the beam are given in Tab. 2.

Mode λ
Theoretical  

ω (Hz)

ANSYS   

ω (Hz)

1 2,43 7,959 7,891

2 6,059 49,488 49,450

3 10,137 138,522 138,45

4 14,184 271,50 271,31

Tab. 2 Comparison of four natural frequencies  

STATE SPACE REPRESENTATION
From equation (11), the state is represented by ma-
trix form

x t q t , q t , ..., q t , q t 151 1 N N
T= l l^ ^ ^ ^ ^ ^h h h h h h6 @

When the controller is not present in the system, 
then the controller term will be zero. Then the state 
space equations are given as follows.

x t Ax t B F t 16

y t, r C r x t 17

y t, r D r x t 18

f= +
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=
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When the controller is present in the system then 
the state space equations are given as follows.

tx t Ax t BU B F t 19f+= +l^ ^ ^ ^ ^h h h h h

where y (t) and y’ (t) are displacement at the free 
end of the beam and velocity at the free end of the 
beam respectively. 
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For controlling external disturbances, control volt-
age given to actuating piezoelectric patch and 
corresponding gain matrix are represented in state 
space form by the following equation (21). 

U t Kx t 21= -^ ^ ^h h h

Substituting equation (21) in equation (19), we get,

x t Ax t BKx t B F t 22

x t A x t B F t 23

f

C f

= - +

= +

l

l

^ ^ ^ ^ ^

^ ^ ^ ^

h h h h h

h h h h

MODAL DAMPING
Damping ratio is found from the transient analysis 
using ANSYS 7.0. Table 3 shows the modal damping 
values for the first four modes. Modal damping for 
the i th natural frequency = 2 ζ

i
 ω

i
 (24)

Mode

Logarith-

mic Decre-

ment

(ln (δ))

Damping 

ratio

for the ith 

mode

(ζi)

Natural 

frequency

for the  ith 

mode

(ωi) 

rad/sec

Modal 

damping 

for the  ith 

mode

(2ζi ωi) 

rad/sec

1 0,09639 0,0153 50,00787 1,5302

2 0,1381 0,0229 310,9442 14,2412

3 0,104 0,0179 870,3592 31,1589

4 0,164 0,0252 1704,031 85,8832
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Tab. 3  Damping ratio and Modal damping of the 
beam

OPTIMAL CONTROLLER DESIGN
Optimal controller called linear quadratic regula-
tor is considered, which is having a quadratic cost 
function of states and controls. The formulation of 
the linear quadratic regulator for a linear system is 
as follows

x Ax Bu 25

y Cx 26

= +

=

l ^

^

h

h

A control function u (t) has to be found that will 
minimize the cost function, J given by the equation                                                 

J x t Qx t u t Ru t dt 27
T T

0

= +

3

^ ^ ^ ^ ^h h h h h" ,#

If R is very large relative to Q, which implies that the 
control energy is penalized heavily, the control ef-
fort will diminish at the expense of larger values for 
the state. When Q is very large relative to R, which 
implies that the state is penalized heavily, the con-
trol effort rises to reduce the state, resulting in a 
damped system. LQR problem corresponds to the 
following cost function equation (27) which is re-
lated to minimizing the total energy of the beam                                                 

J

2
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where Tk is the kinetic energy and Ve is the potential 
energy of the beam. By using the orthogonal condi-
tion, the cost function transformed is of the follow-
ing form.

J x t Qx t u t Ru t dt 31

where Q
2

AL
diag , 1, ..., , 1 32

T T

0
3

1
2

N
2

= +

=
t

~ ~

3

^ ^ ^ ^ ^

^ ^

h h h h h

h h

" ,#

Fig. 3 Bode plot representing transfer function be-
tween deflections at free end step input

Total energy of the beam is considered as the cost 
function. The objective of this is to minimize the to-
tal energy of the beam. Fig. 3 shows the Bode plot 
representing transfer function between deflections
at free end and step input given by  F (t) =1 N for t 
≥0. The response of the beam is shown in Figs. 4, 5. 
It is clearly understood that controlled vibrations are 
having less amplitude in tip deflection and velocity 
and settling time (1,5 sec) when compared with un-
controlled system (8 sec). 

Fig. 4 Response at the free end of the beam due to 
step input at free end
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Fig. 5 Velocity at the free end of the beam due to step 
input at free end of the beam

Fig. 6 Voltage required for controlling the free end 
vibrations due to step input

Fig. 7 Response at different positions along the 
length of the beam due to step input

Fig. 8 Response at different positions along the length 
of the beam due to step input 

Fig. 6 shows the variations of voltage required to 
control the vibration actively. The variations are 
achieved by optimal controller. Figs. 7 and 8 show 
responses at different positions of PZT actuator 
along the length of the beam due to step input for 
uncontrolled and controlled systems respectively. 
When the actuator is located near the fixed end, it 
observed that the vibrations are controlled more 
effectively than with other locations. At the same 
time, by varying control energy (R), the vibration 
settling time are determined and tabulated in Tab. 
4. When R is decreased, the settling time reduced
significantly.

[R] With controller  time requi-

red for vibration decay

[4x10-4] 8

[4x10-6] 7

[4x10-8] 1,499

[4x10-10] 0,1991

[4x10-12] 0,1377

CONCLUSIONS
In this work, the vibrations caused by step input 
on flexible structure (cantilever beam) are actively 
controlled by using piezoelectric actuators. Vibra-
tions are actively controlled at the free end of flex-
ible structures using piezoelectric actuators. Vibra-
tion control is more effective when the actuator is 
placed at the root. Optimal linear quadratic regula-
tor designed for active vibration control based on 

Tab. 2 Comparison of four natural frequencies  
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the cost functions related to minimization of total 
energy of the beam is proved to be an effective tool 
to control the vibrations actively. If state weighting 
matrix is very high, the vibration controlling effect 
is very high. Also, controller weighting matrix value 
should be very low for effective active vibration 
control. However, the cost implications have to be 
studied further.


