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Adaptive Control of Non-linear System 
Using Neural Network
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ABSTRACT
The paper deals with one of possible methods for control of non-linear dynamical sys-
tem, namely with the adaptive neural PS controller (ANPSC). Its principle is in on-line re-
finement of the model system and then in the adaptive adjustment of the controller pa-
rameters. The model of the plant is realized with a two-layer feedforward neural network. 
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INTRODUCTION
This work was motivated by an attempt at spread-
ing information about the results of simulation of 
control of a non-linear dynamical system by means 
of adaptive neural PS controller (ANPSC), analysis of 
the controlled system, goals of the control, choice 
of learning coefficient of the neural network rep-
resenting the model of the plant, choice of learn-
ing coefficient of the neural network of controller, 
and comparison of the quality of control process by 
means of this type of controller with a classical PS 
controller created also in the form of neural network 
(hereinafter classical PS controller).
It is presumed that the reader is acquainted with 
classical methods of identification and control of 
systems as well as with the methods based on uti-
lization of artificial neural networks (ANN), which 
are applicable to the same purpose. If not, then he/
she can find the necessary information about these 
principles of identification and control in [1], [2], [3], 
[4], [5], [6], [7], [8], [9], [10].
It is well known that adaptive control [2], [9], [11], 
[12], [13] is always realized on the basis of knowl-
edge of mathematical model of the controlled pro-
cess. If the properties of this process change in the 
course of control, then it is necessary to on-line re-
adjust also the parameters of the controlling system. 
The algorithms of this control are well developed 
for the cases of the model being presented in the 
form of a differential or difference equation. How-
ever, construction of such model necessitates the 
possibility of linearization in the surrounding of the 
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where u(k) is the input signal and ys(k) is the output 
signal of the controlled system. The nominal values 
of parameters A and B (when they are not changed in 
the course of control): A = 1,2 and B = 0,92. The prop-
erties of system (1), which is presented in [3] without 
any closer description, are most simply determined 
by experiment, namely on the basis of analysis of re-
sults of simulation calculations of responses of the 
system to a sequence of input impulses:

Fig. 1 Impulse responses

working point [2]. 
The present development of artificial neural net-
works inter alia as means for direct modeling of non-
linear systems offers the possibility of application of 
these networks also in schemes of adaptive control. 
The controller itself can then be realized as a neural 
network. One of the ways of realization of this type 
of control is described below.

ANALYSIS OF CONTROLLED SYSTEM
Let us presume that the controlled system is de-
scribed by difference equation [14]
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The responses to the impulses with the magnitude 
u

i
 = 0,05; 0,273; 0,65; 0,87; 1,087; 1,15 are given in 

Fig. 1.
It can be seen that:
The character of responses of system depends on 
the magnitude of input signal ui (Fig. 1), the results 
of analysis of this experiment can be summarized as 
follows:
-the course of output signal is non-periodic up to 

The control part of the ANPSC has the structure of 
the classical PS controller, and it is also created in the 
form of the neural network (simple perceptron). The 
simulation calculations were performed in MATLAB. 
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Fig. 2 Static characteristic

GOALS OF CONTROL
The below-presented simulation calculations for the 
system control using ANPSC pursue the following 
goals:
After starting the control algorithm, an “as fast 
as possible” adjusting is required for the controlled 
quantity ys(k) to its requested value into the starting 
working point P without any distinct overshoot of 
the regulated quantity. The working point has coor-
dinates of the centre of working range of the system 
(see Fig. 2).
On moving from the working point P to another 
working point, we want in principle the same as in 
the preceding point, being aware of the fact that the 
term “the fastest” is relative. We want the quality of 
control process to be verified in the whole working 
range of the system for the change of required value 
of regulated quantity in the form of step function r(k) 
= 0.6; 1; 0.6; 0.2; 0.6 with the length of one step equal 
to 25 steps.
In the context of the fact that the changes DA and 
DB of the parameters A(k) and B(k) of the system 
can have the form of impulses, and the failures in 
the action quantity vu(k) and in the regulated quan-
tity vys(k) can have the form of jumps (see equations 
(3a,b) and (3c,d)) we are interested in the veloc-
ity and efficiency of elimination of the influence of 
these failures upon the regulated quantity.
The action quantity must fulfil the condition u(k) 
≥ 0.

Hence, in principle, the problem lies in assigning the 
“task of monitoring”, which is typical of the control 
realized by means of a servo, and the “task of stabili-
zation”, which ensures maintaining of the regulated 
quantity at the required value during all sorts of fail-
ures affecting the system. 
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u≤0,2731,
-in the range ud(0,2731; 0,87) the courses of respons-
es are oscillating, dampened, with an increase and 
subsequent decrease in the oscillations,
- the oscillation maximum lies at u = 0,65,
-at the value u = 0,87 the output signal stabilizes after 
the first step both at the ascent of impulse and at its 
descent,
-in the range of u d(0,87; 1,087)the course of respons-
es is oscillating, dampened, with growing oscillations,
-at the value of u = 1,087 the system is at its stability 
limit.
At u > 1,087 the system is unstable.
When the impulse decreases to zero value, the out-
put signal of the system (in the case of the preceding 
impulse magnitude being u < 1,087) stabilizes at the 
value ys = 0,2, i.e. the difference equation (1) is in this 
range defined for the initial conditions u(0) = 0; ys(0) 
= 0,2 (see Fig. 1).
When the impulse decreases from the value u = 
1,087 to zero, also the value of y decreases to zero.
In the case of impulse decrease from the value u > 
1,087 to zero, when the system is unstable, the solu-
tion is unstable too.
The static characteristic obtained from stabilized 
values of y is given in Fig. 2.
The above-given calculations show that the system 
is non-linear in stabilized states as well as in dy-
namical properties, and its working range is in the 
interval of the input quantity u d(0,2; 1) and out-
put quantity y

s
 d(0,2; 1). The anomalies described in 

items 4) and 5) lead to the conclusion that the value 
of action signal u(k) in the case of control must not 
decrease below zero value.

P
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In the simplest case, the successfulness of solu-
tion can be evaluated on the basis of merely visual 
assessing of courses of quantities of the control 
process using verbal expressions such as “better - 
worse”, “satisfactory - unsatisfactory” etc., or analyti-
cally by means of the mean-quadratic criterion (see 
below, chapter 3), or by determination of the value 
of control step at which the required value of regu-
lated quantity is achieved (see below, chapter 4).
The above-defined goals of control show that 
the task will lie in suggesting such control system 
whose properties fall within the area of robust con-
trol realized, e.g., by the adaptive control algorithm 
mentioned. This algorithm enables adaptation of 
controller to various transfer properties of the con-
trolled system and contributes to more effective 
elimination of all sorts of failures affecting the sys-
tem etc.

DESCRIPTION OF BLOCK SCHEME OF ANPSC
The regulation circuit with ANPSC is formed by mins 
of two partial feedback circuits (see Fig. 3) and one 
common neural controller NC.
The first feedback circuit consists of:
Increment controller NC realized by a perceptron 
(e.g., see [3] or [9]) with the weights qi , i = 0, 1,  which 
generally have the character of coefficients of classi-
cal PS controller.
Non-linear controlled system (S), in our case in the 
form of equation (1).
The second feedback circuit consists of:
The above-mentioned neural controller NC.
Model of controlled system in the form of feedfor-
ward neural network (FFNN) with the input u,  out-
put ym and the connection weights ci .

Fig. 3 Block scheme of ANPSC

Learning algorithm of FFNN. Before starting the 
control algorithm of ANPSC, the FFNN is trained off-
line by means of BP - algorithm. The result of train-
ing is the values of weights ci of FFNN calculated 
from the equation.
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The changes of weights  Dc
i
(k) of FFNN are calcu-

lated by the method of Back-propagation (BP - algo-
rithm), which starts from the relationship.
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In this equation, α is the learning coefficient of 
FFNN, and Es(k) is quadratic function of deviation.
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The “actualized” FFNN (AFFNN) whose output 
quantity yma is a function of momentary values of 
connection weights ci of FFNN calculated during its 
on-line training step, realized within the framework 
of control of the regulated system.
Learning algorithm of NC which in the course of 
control ensures continuous refinement of the start-
ing values qist of ANPSC. The result of learning the NC 
is the values qi of weights of NC calculated from the 
equation.

q k q k 1 q k 7i i i= - + D^ ^ ^ ^h h h h

The weight changes Dqi(k) of NC are calculated 
from equations that are analogous to equations (5) 
and (6), i.e.:
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In this equation, b is the learning coefficient of NC, 
and E

r
(k) is quadratic function of deviation.
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The control circuit is described in [2] more briefly 
and in the context with classical adaptive control 
with description of adaptive controller as well as 
with system of difference equations. The BP - algo-
rithm used for control of ANSPC is developed in [5], 
and the derivation of learning algorithm of NC is 
available in [13].
Briefly speaking, the design procedure and putting 
of ANPSC into operation consists in the following 
steps:
Adjustment of starting values of parameters qist 
of controller NC, which are used further as starting 
values of ANPSC.
Construction of model of controlled system in the 
form of FFNN and its training off-line.
Continuous refining of the values qist by learning 
NC with simultaneous on-line training of FFNN.

ADJUSTMENT OF STARTING VALUES q
ist

 AND CON-
TROL BY MEANS OF NEURAL CONTROLLER NC IT-
SELF
The starting values of parameters qist are adjusted 
in the first feedback circuit (see chapter 3). It is pre-
sumed that NC is in the form of incremental PS con-
troller:

u k q e k q e k 1 u k 1 100 1= + - + -^ ^ ^ ^ ^h h h h h

with parameters q
i 
, i = 0, 1, where e(k) is the control 

error and u(k) is the output signal of the controller. In 
spite of the fact that in our case the controlled sys-
tem is non-linear, its dynamical properties in the sur-
roundings of origin (see Fig. 2), which are analogous 
to the properties of a linear system of the 1st order, 
justify application of equation (3). The controller pa-
rameters are adjusted tentatively, using the method 
of “trial and error”.
For the purpose of adjustment of NC parameters, 
the value  b = 0 is set in the second partial control 
circuit (i.e., this circuit is put out of operation), and 
then we work with the first control loop consisting 
of controller (10) and system (1). Thereafter, for the 
required value of controlled variable r(k) (adjustment 
of system regime into the working point) we find 
the values of parameters q

0
 and q

1
 which approxi-

mately correspond with the requirement stated in 
item 1) of the goals formulated in chapter 2, e.g.:

q 0, 45 q 0, 05 11a, b0 1= = - ^ h

The proportional component of controller is equal 
to parameter q

0
, the increment of control action - 

this is an incremental controller - is Du = q
0 

– q
1
. The 

course of control response during controlling the 
system (1) by the NC controller with the coefficients 
given in equation (11a,b) is presented in Fig. 4 for 
the first ten regulation steps. The controlled variable 
reaches the set point y

s
(k) ≈ r(k) = 0,6 in the 7th step, 

with the overshoot Dy
smax

 < 2% in the 3rd step.

Further, the parameters q
0
 and q

1
 (11a,b) are referred 

to as the starting values q
ist

, i = 0, 1 for the adaptive 
controller ANPSC.

Fig. 4 To the control with Neural Network Controller

Fig. 5 System control whith application of PS Control-
ler

Figure 5 presents the course of control response for 
the set point tracking of controlled variable in the 
form of stepped function r(k), defined in chapter 2,  
for changes in parameters A, B and disturbances ou 
and o

ys
 - see equations (3a,b) and (3c,d). It can be 

seen that deviations towards higher (lower) required 
values are connected with slowing down (speeding 
up) of the control response, which is in agreement 
with the course of static characteristic in Fig. 3. The 
oscillating course of quantities of the control loop 
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Failure
Attaining of 

requested value
Regulation step

A
95% 6

100% 15

A
95% 6

100% 17

B
95% 3

100% 14

B
95% 4

100% 15

y
u

95% 7

100% 19

y
ys

95% 6

100% 18

Jump w
Reaching of 

required value
Regulation step

0,6 - 1,0
95% 8

100% 22

1,0 - 0,6
95% 9

100% 24

0,6 - 0,2
95% 11

100% 25

0,2 - 0,6
95% 3

100% 16

Tab. 1 Successfulness of regulation by means of clas-
sical PS controller during changes of required value

On moving from the working point r(k) = 0,6 to the 
set point r(k) = 1, the controlled variable attains 95% 
of set point in the 8th step, while stabilized value is 
not attained: beginning from the 22nd step y(k) oscil-
lates.
On changing from r(k) = 1 to r(k) = 0,6; 95% of the 
set point is attained in the 9th step and stabilization 
in the 24th step.
When moving from the working point r(k) = 0,6 to 
the required value r(k) = 0,2; 95% of the set poin is 
attained in the 11th step, while in the 25th step the set 
point is not fully attained. This is due by the neces-
sary restriction of the action range to zero value.
When changing from r(k) = 0,2 to the working 
point r(k) = 0,6 the system behaves like during ad-
justment of the controller parameters in the first 
phase of control. The overshoot is in the 3rd step, 95% 
of set point is attained in the 5th step and stabiliza-
tion in the 16th step. The results of elimination of fail-
ures are given in Tab. 2.

Tab. 2 Successfulness of regulation with classical PS 
controller during failures

From the given facts it follows that the classical PS 
controller without problems eliminates the influ-
ence of disturbances in roughly the same steps of 
control: the controlled variable attains 95% of re-
quested value in the 7th to 8th step, while complete 
stabilization is attained in the 14th to 19th step.
Another possibility of evaluation of successfulness 
of control is the calculation of the mean-quadratic 
criterion of the deviations between the set point 
and actual value at the output of system (control er-
ror) according to the relationship.
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In the problem dealt with here, the value of this cri-
terion calculated for the whole region of control is 
equal to E

a0
 = 0,067902, for the region of changes of 

set point E
a1

 = 0,10396, and for the region of distur-
bances E

a2 
= 0,016830.

Thus there arises a possibility to “improve” the 
course of control process by application of ANPSC. 
For this purpose, however, it is necessary to deal 
with construction and training of the feedforward 
neural network as the model of system.

at r(k) = 0,2 is removed by programmed restriction 
of control action to u(k)

min
 = 0, as it was required 

in “goals of control” in chapter 2. The courses of re-
sponses to impulse changes in parameters A and B 
indicate a relatively fast elimination of the influence 
of these failures upon the course of regulation pro-
cess. The same also applies to the elimination of in-
fluence of jump failures in the action quantity ou and 
in the controlled variable o

ys
 .

Mere visual inspection shows that the required 
goals of control were not fully fulfilled. On the basis 
of analysis of simulation calculations results (see Tab. 
1) it can be stated that:
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MODEL IN THE FORM OF FFNN AND ITS TRAINING 
OFF-LINE
A more detailed treatise of topology design of FFNN, 
its training and testing is available, e.g., [7]. In our 
case the suggested FFNN has the following topol-
ogy (without claim that the structure is optimal):
Number of source nodes: 2.
Number of hidden layers: 1.
Number of neurons in a hidden layer: 3.
Number of neurons at the output: 1.
Activation function of hidden neurons: unipolar 
sigmoid with steepness s = 1.
Activation function of output neuron: linear with 
steepness K = 1.
The starting point for construction of training set of 
FFNN is the stepped function u(k) = 0,2; 0,4; 0,6; 0,8; 
1; 0,8; 0,6; 0,4; 0,2; 0 with the number of steps in each 
step equal to 30. The training is realized by means of 
the BP - algorithm.
The results of training can be seen in the courses of 
the variables u(k), ys(k) and y

ma
(k) in Fig. 6 for the fol-

lowing values of parameters of BP - algorithm:
The learning coefficient determined experimen-
tally and ensuring the minimum value of criterion 
function and its most rapid convergence: a = 0,3.
The maximum number of training periods en-
abling visual monitoring of fulfilment of the above-
mentioned condition: pemax = 10 000.
The starting connection weights w(j) (between 
the hidden layer and output neuron) and v(i,j) (be-
tween the input nodes and hidden layer): chosen at 
random - see Tab. 3.

j 0 1 2 3

w(j) 0,1 0,1 -0,5 0,2

i/j 0 1 2 3

y(i,j)

0 -0,5 0,4 -0,3

1 0,1 -0,2 0,3

2 0,25 -0,35 0,45

Tab. 3 Starting values of connection weights

From Fig. 6 it can be seen that in this way constructed 
and trained FFNN as a model of system (1) very well 
approximates its dynamical behaviour. The charac-
ter of response y

s
(k) of the system and y

m
(k) of FFNN 

to the stepped function u(k) is in accordance with 
the character of responses to the jump functions in 
Fig. 1, i.e. increasing value of the input signal is con-
nected with increasing amplitude of the dampened 

oscillations of the corresponding responses, practi-
cally applying y

s
(k) ≈ y

m
(k). The partial responses to 

individual steps of function u(k) have overshoots of 
periodic, dampened character, this feature being 
more marked for the responses approaching the 
maximum of the stepped function.

Fig. 6 Course of training

Tab. 4 Resulting values of connection weights for 
α = 0,3

The obtained values of connection weights are giv-
en in Tab. 4.

CONTROL WITH APPLICATION OF ANPSC
The above-obtained values of connection weights 
of FFNN and starting values of parameters q

ist
 of 

neuron controller are starting parameters of the al-
gorithm of ANPSC. 
After starting ANPSC there proceeds on-line, gradu-
ally in individual steps - briefly speaking - refinement 
of the starting values of weights cst of FFNN, actual-
ization of the output quantity y

ma
 by means of the 

block AFFNN, and subsequent training of NC involv-
ing readjustment of parameters q

0
 and q

1
 of control-

ler so as to ensure the minimum value of the control 
error e (6) and quadratic deviation e

r
 (9).

The aim of the simulation calculations then is (like 
in the case of off-line training of FFNN looking for 
the optimum value of learning coefficient of FFNN 
a ensuring the minimum value of the criterion func-
tion E

a
 (6)) to find such value of learning coefficient 

b of NC that will ensure the required course of the 
control process.

j 0 1 2 3

w(j) 0,0428 2,5639 -2,5727 0,0255

i/j 0 1 2 3

y(i,j)

0 -0,698 1,499 0,028

1 -0,269 -2,163 -3,129

2 -0,237 0,664 0,604
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For this purpose, a series of simulation calculations 
were carried out for b = 0,1 to 2,8 and the same 
changes of the set point r(k) = 0,6; 1,0; 0,6; 0,2; 0,6, 
failures of parameters of controlled system A and 
B, and failures of the action quantity and regulated 
quantity v

u
(k), v

ys
(k), like in the case of control of the 

system by means of classical PS controller (3a, b, c, 
d). The obtained results presented as the minimum 
numbers of control steps needed for stabilization of 
the regulated quantity to 95% and/or 100% of the 
required value of the regulated quantity for the indi-
vidual jump changes, and the corresponding values 
of learning coefficients of NC b

opt
 are given in Tab. 5.

jump b
opt

0,1 0,3 0,4 0,7 1,1 1,4

0,6 - 1,0
95% 4

100% 22

1,0 - 0,6
95% 4

100% 11

0,6 - 0,2
95% 11

100% 25

0,2 - 0,6
95% 4

100% 5

From the table it is clear that the optimum value of 
learning coefficient b

opt 
changes depending on the 

change of the required value. This phenomenon can 
be explained by the non-linearity of the controlled 
system (1). In the case of changes of the required 
value in the range of 0,6 - 1,0 - 0,6, where the ampli-
fication of system is smaller than that in the working 
point P = 0,6, the learning value b

opt
 of NC is high; 

on the other hand, in the case of the changes in the 
range of 0,6 - 0,2 - 0,6, where the amplification of 
the system is higher than that in the working point 
P, the learning value b

opt
 of NC is smaller.

Comparison with the results of control by means of 
classical PS controller (see Tab. 1) shows that, apart 
from the jump 0,6 - 0,2 (with artificially introduced 
restriction of the action quantity to u ≥ 0), the con-
trol process was accelerated, i.e. its quality was im-
proved. The same can be documented also using 
the mean-quadratic criterion (12), see Fig. 7. These 
courses were calculated for the whole region of 
simulated control (course of E

a0
), as well as for the 

region of changes of set point (course of E
a1

) and 

Tab. 5 Limit values of regulation steps with ANPSC

for the region of disturbances (course of E
a2

). Circle 
denotes here the minimum values, which were ob-
tained for the whole region of control as well as for 
the region of changes of set point at the value of 
learning coefficient b c 2. The course in the region 
of disturbances is almost unchangeable and equal 
to the value attained in the control with classical 
PS controller. This can be explained by the fact that 
both the changes of system parameters and distur-
bances are introduced into the system under the re-
gime of the working point in which the coefficients 
of classical PS controller were determined.

Fig. 7 Course of mean-quadratic deviation Ea after 
change of learning coefficient of NC

Fig. 8 Regulation process in ANPSC regime for β=1,0

From what has been said it follows that an unam-
biguous determination of learning coefficient of NC 
controller for changing conditions of control is im-
possible. Therefore, its choice will depend not only 
on a more detailed analysis of behaviour of the con-
trol loop but also on the control system designer’s 
experience.
The control course for a chosen value of learning 
coefficient of NC b = 1,0 is presented in Fig. 8. Even 
merely visual inspection shows a distinct improve-
ment in the control quality as compared with the 
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control by means of classical PS controller. For illus-
tration, Fig. 9 also presents the courses of adapta-
tion of parameters of NC controller. The resulting 
adapted values of weights (parameters) of neural 
controller are q

0
 = 0,6070 and q

1
 = –0,1917.

Table 6 gives the resulting adapted values of weights 
of FFNN.

Fig. 9 Learning of neural controller

Tab. 6 Resulting values of adapted connection 
weights

j 0 1 2 3

w(j) 0,0393 2,5592 -2,5771 0,0187

i/j 0 1 2 3

y(i,j)

0 -0,6980 1,5005 0,0279

1 -0,2691 -2,1623 -3,1275

2 -0,2372 0,6593 0,6106

CONCLUSION
The quality improvement of control process with 
application of ANPSC, as compared with the results 
of control by means of NC controller, is obvious, but 
it cannot be considered astonishing. The obtained 
result only confirms the known fact that a simple 
classical PS controller (in the form of either the dif-
ference equation or neural network) is able to suc-
cessfully control not only linear system but (with 
certain limitations) also simpler non-linear systems. 
The above-presented system (1) belongs to such 
category. However, on the other hand it is not a 
mere cliché to claim that it is sometimes suitable - 
for control of more complex non-linear systems - to 
adopt also more complex types of controllers, such 
as ANPSC, predictive controller, or hybrid controller. 
That is why it is useful to become well acquainted 

with the principles and properties of these control-
lers so as to be able to adopt them if necessary. Of 
course, application of a particular controller also de-
pends on the specification of the control task, i.e. of 
the aims to be pursued by the control.
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