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LADISLAV FŐZŐ (SK) ladislav.fozo@tuke.sk

ABSTRACT
Small turbojet engines represent a special class of turbine driven engines. They are
suitable for scientific purposes and research of certain thermodynamic processes ongo-
ing in turbojet engines. Moreover such engines can be used for research in the area of
alternative fuels and new methods of digital control and measurement. Our research,
which is also presented in this article, is headed toward these aims. We evaluate and
propose a system of digital measurement of a particular small turbojet engine - MPM
20. Such engine can be considered as highly non-linear large scale system. According
to obtained data and experiments we propose different approaches to modeling of the
engine with use of analytic experimental and certain methods of artificial intelligence
as new methods of modeling of complex systems.
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INTRODUCTION
Present state of technological development and growing complexity of systems offer
many challenges and also opportunities to achieve better results. In the area of jet
propulsion, terms like safety, economic profitability and at the same time high efficiency
come into foreground. The traditional systems of control are becoming obsolete and a
with the need to satisfy the mentioned terms it is needed to incorporate the newest
technologies of control even for use in older systems to bring them up to nowadays
standards. It would not be economically favorable to test such technologies within
expensive and also very complex big turbojet engines also with regard to safety of
such testing. Therefore a special class of turbojet engines designated as small turbojet
engines (usually used to start normal sized engines) can be used as an ideal test-bed for
differently aimed experiments in this area. Our research is headed towards three basic
aims.

1. Digital measurement of turbojet engines, which means digital real-time measurement
of different state and diagnostic parameters of such engines.

2. Design and implementation of new dynamic models and control algorithms of turbo-
jet engines, especially the situational control algorithms incorporating methods of
artificial intelligence.

3. The aim resulting from the previous points is to explore possibilities of use of alter-
native fuels in turbojet engines.

All these aims comply and put emphasis mostly on safety issues of turbo-jet engines.
Other special feature resulting from our third aim is direct use of old obsolete small
turbojet engines as sources of energy with use of cheap alternative fuels. We have to ta-
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Fig. 1: Laboratory of intelligent control systems of aircraft engines.

Fig. 2: The scheme of MPM 20 engine [6].

ke in consideration that there exist a huge num-
ber of such small turbojet engines in old aircraft
that are in non flying condition. Such engines can
be refurbished and used again for other purposes.
All knowledge obtained by experiments with such
engine can be expanded to higher levels and cer-
tain principles may be used for design of particular
models and algorithms of control that could also be
used in normal class turbojet engines.

The object of research - the small turbojet en-
gine MPM 20, the related research and experiments
is ongoing in the Laboratory of intelligent control
systems of aircraft engines. This is a joint labora-

tory of Department of aircraft engineering and De-
partment of cybernetics and artificial intelligence
on Technical University of Košice (Fig. 1).

MPM 20 ENGINE – CHARACTERIS-

TICS AND DATA

The experimental engine MPM 20 has been derived
from the TS - 20 engine, what is a turbo-starter
turbo-shaft engine previously used for starting en-
gines AL-7F. The engine has been adapted accord-
ing to [6]. The engine has been rebuilt to a state,
where it represents a single stream engine with ra-



dial compressor and single one stage non-cooled
turbine and outlet jet. The basic scheme of the en-
gine is shown in the Fig. 2.

In order to model the engine, it is necessary
to measure its characteristics. All sensors, except
fuel flow and rotations sensor, are in fact analogue
which in and have voltage output. This is then dig-
italized by a SCXI measurement system and corre-
sponding A/D converter and sent through a bus into
computer. Every parameter is measured at the sam-
pling rate of 10 Hz. The data acquistion has been
done in LabView environment [13].

Fig. 3: A scaled plot of individual characteristics of
the engine.

The following parameters are measured:

• air temperature at the outlet from the diffuser of
the radial compressor T2C [◦C],

• gas temperatures in front of the gas turbine T3C
[◦C],

• gas emperature beyond the gas turbine T4C [◦C],

• static pressure of air beyond the compressor p2
[at],

• static pressure of gases in front of the gas turbine
p3 [at],

• static pressure of gases beyond the gas turbine p4
[at],

• fuel flow Qpal [l/min],

• thrust T h [kg],

• rotations of the turbine/compressor n1 [rpm].

The virtual dashboard (structural connection
of individual sensors with their correction ele-
ments, calibration characteristics) have been im-
plemented and created in the Labview environment
(see Fig. 4).

Fig. 4: The virtual dashboard.

Course of every measured parameter exhibits
non-linear behavior. Our aim is to create a set of
dynamic models of the engine’s operation in all its
operational states. Usually, models of engines are
created only for a certain operating point, which is
usually set into the area of stable operation of an
engine and is usually taken as a SISO (single in-
put, single output) model. These models are use-
ful for design of certain types of controllers for se-
lected regimes of an engine. However, if we want
to achieve higher quality of control, we need to de-
sign controllers with several input parameters and
according models for them. Ideally we want to de-
sign a multi-parametric dynamic model in all oper-
ational states of a jet engine.

MPM 20 ENGINE–MODELING
In modeling are focused on two basic approaches
the experimental and analytical one. In the exper-
imental approach we are focused on linear models
suitable for simple controller design and non-linear
one with use of methods of artificial intelligence.
In the linear form, we will try to create models of
the MPM 20 engine only in its stable operation to
observe the course of basic parameters of the en-
gine. In the non-linear approach we will try to de-
sign modular model architecture, which will be able
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to simulate operation of the engine in all possible
regimes. The model will be designed in terms of
situational modeling approach.

LINEAR MODELING OF MPM 20

By creation of linear models we will use a state
space dynamic linear model of the engine, which
can be generally described in the following way:

Δq̇ = AΔq+BΔu,

Δy = CΔq+DΔu,
(1)

where

Δq ∈ R
r – vector of state variables,

Δu ∈ R
m – vector of input (control) variables,

Δy ∈ R
s – vector of output (observed)

variables,

ΔA ∈ R
r×r – matrix of dynamics,

ΔB ∈ R
r×m – input matrix,

ΔC ∈ R
s×r – output matrix,

ΔD ∈ R
s×m – matrix of direct relations

coefficients.

For purpose of turbojet engine modeling we con-
sider the dimensions of individual matrixes can be
set as follows: r - number of compressor stages, m
- number of control parameters, s is the number of
observed variables. For the purpose of MPM 20 en-
gine modeling we will consider the following vari-
ables:
State variable

• Δn – difference of rpm’s of the radial compressor
[rpm].

Control variable

• Δd5 – difference of diameter of the exhaust noz-
zle [m],

• ΔQpal – difference of fuel flow [l/min].

Observed variables

• Δt4C – difference of gases temperature on the out-
let of the turbine [◦C],

• Δp2C – difference of pressure on the compressor
[at],

• ΔFt – difference of thrust of the engine [kg].

Further we can also describe a turbojet engine in
terms of state space model as following for control
variable of fuel flow:

Δṅ = AΔn+BΔQpal ,

Δy = CΔn+DΔQpal ,
(2)

and for control variable of exhaust nozzle diameter:

Δṅ = AΔn+BΔd5,

Δy = CΔn+DΔd5.
(3)

The model describes the basic dynamic proper-
ties of the engine in terms of differences from sta-
ble regime of operation. After using a method of
linear approximation from measured data of the en-
gine we are getting a set of differential linear equa-
tions describing the engine:

Δṅ = −5.3315e−5.9891Δn+006Δd5

ΔT4c = 9.1372e−004Δn+194.42Δd5

Δp2c = 1.96e−004Δn+70.2465Δd5

ΔFt = 4.953e−004Δn+480.60Δd5

(4)

and for Qpal control variable we are getting the fol-
lowing set:

Δṅ = 2.2398e−0.6494Δn+004ΔQpal

ΔT4c = −7.003674e+0.0596Δn+002ΔQpal

Δp2c = 2.0019e−005Δn+1.9328ΔQpal

ΔFt = 4.6227e−005Δn+61.190ΔQpal

(5)

Simulations with the model are shown in the
following figures.

Although a first order linear dynamic model
can simulate some basic dynamic properties of the
MPM 20 engine with mean average errors about
280 rpm (Fig. 6) and can be used to design basic
controllers such as constant rpm regulator, they are
not sufficient to capture properties of a jet engine
for design of efficient advanced control algorithms.



Fig. 5: a) Differences of the observed parameters of the engine in response to fuel flow step (left).
b) Differences of the observed parameters of the engine in response to exhaust nozzle diameter step.

Fig. 6: Simulation of a linear model against pre-
dicted data.

THE ANALYTICAL APPROACH IN MODE-

LING OF MPM 20

Static and dynamic properties of turbojet engines
(MPM 20) can also be described by a mathemati-
cal model of operation single stream engine under
equilibrium or non-equilibrium conditions. This
will allow to model the thrust, fuel consumption,
pressures and temperatures of the engine by differ-
ent altitudes and velocities in the chosen cuts of
the engine The steady operation of the engine is
such a regime, where in every element of the en-
gine same thermodynamic processes are realized.
Operation of an engine in its steady operation can

be described by:

1. algebraic equations of balance of mass flow of
working materials through nodes of the engine,
equations of output balance, equations of regu-
lation rules and equations describing particular
oddities of an engine. A system of equations ex-
presses that for given outer conditions of oper-
ation of an engine, characteristics of all nodes
of an engines and preset values of control pa-
rameters (fuel supply, cross section of the output
nozzle, angle of compressor blades), operation of
the engine will settle itself on one and only one
regime [18]

2. graphically by utilization of knowledge of char-
acteristics of all parts (output, compressor, tur-
bine, etc) of the engine and their preset curves
of joint operations (e.g. lines of stable rations
of T3c/T1c in compressor). Designation of all
curves of the engine is done in a way that we will
try to fulfill continuity conditions for all parts of
the engine and characteristics of all these parts
are given. These characteristics can be found by
direct measurement, computation, etc.

Any regime of the turbojet engine has to fulfill the
continuity equation which designates dependencies
between mass flow of air through the compressor,
turbine, combustion chamber and exhaust system:

QV S = Qk = QSK = QT = Qtr = Q (6)

66 VOLUME 13, No. 3,  2009



67

Acta Mechanica Slovaca
Journal by Fakulty of Mechanical Engineering – Technical University of Košice

and a condition of no distortion of the shaft

nk = nT = n, (7)

where

QV S – mass flow of air through input system,
Qk – mass flow of air through the compressor,
QSK – mass flow of air through combustion

chamber,
QT – mass flow of gases through the turbine,
Qtr – mass flow of gases through exhaust nozzle,
nk – revolutions of compressor,
nT – revolutions of turbine.

Another condition for steady operation of the en-
gine has to be fulfilled – the engine doesn’t change
its revolutions in time

dn
dt

= 0. (8)

This condition will be fulfilled when output of the
turbine will be the same as output taken by the com-
pressor and accessories of the engine

WKC = ηmWTC, (9)

where

ηm – mechanical effectiveness of the engine,
WKC – technical work of the compressor,
WTC – technical work of the turbine.

The curve of stable operation is shown in the
Fig. 6a. A detailed algorithm of designation of
operational points of steady operation of a single
stream engine is described in [18].

Non steady operation of an engine is a regime
of its operation, where in every element of the en-
gine time changing thermodynamic processes oc-
cur. Function of the engine in such non steady
regimes can be described by a system of differential
and algebraic equations. Such system of equations
describes transient processes by change of regime
of the engine, when thrust lever is moved or other
change of flight regime occurs.

Such non-steady regime occurs when work of
the turbine and compressor is not equal, this means

that rotation moments of the turbine MT and com-
pressor MK are not equal. Acceleration of the en-
gine is dependant upon this difference:

MT −MK −Mag = J
dω
dt

, (10)

where
dω
dt

– angular acceleration of the engine,

J – moment of inertia of all rotating masses
reduced to the shaft of the engine,

Mag – moment needed for actuation of aggrega-
tes and overcoming of friction.

As the angular velocity is given by the equation
ω = πn

30 and output is given by equation P = Mω
and incursion of mechanical effectiveness, the ba-
sic equation of non-stable operation of the engine is
obtained:

PT ηm −Pk = J
π2

900
n

dn
dt

. (11)

Stable operation of the engine is then computed
which gives the initial conditions. Differences of
revolutions are then computed in a given time space
Δt and we repeat this algorithm until the end of the
transient process (Fig. 7).

Fig. 7: The curve of steady state of operation of the
MPM 20 engine.

Analytic mathematical model of the engine is
based on physical rules which characterize prop-
erties and operation of different nodes of the en-
gine, thermodynamic and aerodynamic processes
obtained by temperature cycle. While we have to



take in account range of operation of turbojet en-
gines which give changes of thermodynamic prop-
erties of working material.

The view of the analytic model in stable regime
(and in transitory states) in the form of compres-
sor characteristics (Fig. 7) has the advantage of
viewing different important parameters of the en-
gine into one graph. This is advantageous mainly
in diagnostics, that means by observation and su-
pervision of important parameters of the engine, if
some of the results from sensors doesn’t present
wrong values, while other parameters of the en-
gine are in normal. This is useful in diagnostics of
the engine. Another advantage of the analytic ap-
proach is its high precision (we are able to achieve
precision within 1% of mean absolute error) [4].
Though there is a deficiency that simulation with
analytic model requires high computational power
and the needed estimation of certain parameters of
the model. We tried to decrease computational de-
mands on simulation of the analytic model by using
methods of artificial intelligence to replace com-
plex non-linear equations describing characteristics
of the individual parts of the engine.

Fig. 8: The curve of non steady state of operation
of the MPM 20 engine (acceleration).

METHODS OF ARTIFICIAL INTELIGENCE

BY ANALYTIC MODELING OF TURBOJET

ENGINES

Resulting from practical expertise of the data and
created analytic models we found that adaptive
fuzzy inference systems are well suited for replac-
ing the complex equations found in analytic mod-
elling. We used the ANFIS - Adaptive-Network-
based Fuzzy Inference System.

This system is based on network architecture
just like the neural networks that maps input on the

bases of membership fuzzy functions and their pa-
rameters to outputs. The network architecture is of
feedforward character [19].

To verify the ANFIS method, we are showing
a simple physical dependency expressing the pres-
sure ratio of a radial compressor, which is a type of
compressor found on the MPM 20 engine.

ΠKC =
[

1+
u2

2(μ+α)
cpT1C

ηKC

] K
K−1

. (12)

The equation can be understood as a static trans-
fer function with two inputs - the temperature T1c
and circumferential speed u2 (speed of the com-
pressor) and one output in the form of pressure ra-
tio. The resulting is shown in the Fig. 9. The sur-
face shown in the Fig. 9 is equal to numeric com-
putation of the equation (12).

Fig. 9: Equation (12) modeled by ANFIS.

The obtained results have confirmed that the
chosen method ANFIS is suitable for modeling of
any mathematic - physical equation with very low
computational demands (trained FIS system is com-
putationaly very simple) by very fine sample period
(by very fine interval of values of input parameters).
Therefore we will further be oriented on improve-
ment of the complex and highly computationaly de-
manding analytic model of the MPM 20 engine by
use of AI methods, with ANFIS in particular.

SITUATIONAL MODEL ARCHITECTURE

Individual dependencies of parameters of a turbojet
engine are more complex than they can be depicted
by a state space model. We can see a general depen-
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Fig. 10: The basic scheme of the model of MPM20 engine.

Fig. 11: The basic scheme of the situational model of the engine.

dence of T2C, T4C, P2C, n parameters on Qpal pa-
rameter in Fig. 7. So in this case it is difficult
distinguish state parameters from observed parame-
ters. The other arising problem is that these depen-
dencies are not stationary and are changing during
course of turbojet’s engine operation. Therefore we
have to decompose the operation of the engine into
some operational regimes, which will represent sit-
uational frames and design at first semiotic models
of individual parameter dependencies as shown in

the Fig. 6. In such case it isn’t possible to easily
set operating points in multi-dimensional non lin-
ear parametric space. The operating point will lie
on a functional of the following parameters:

Op = f (Qp,N1,T4,T2,P2). (13)

To decompose the model into subspaces, we
will use the methodology of situational modeling
and decompose the model into sub-models repre-



senting certain operating points of the engine.

Opi = fi(N1,T4,T2,P2), i = 1,2, . . . ,n, (14)

where n is the regimes count. This decomposi-
tion can be done by expert knowledge or with use
of some clustering algorithm. We propose the de-
composition of the model into a set of three operat-
ing points (n = 3), or in terms of situational mod-
eling into three distinct situations [2]. That is the
startup of the engine, stable operation of the en-
gine and its shutdown. Every situational model
is further decomposed into a set of non equiva-
lent sub-models, which are interconnected accord-
ing to the basic physical dependencies in the en-
gine and are treated as black box systems. Every
of these sub-models is then represented by a neural
network or fuzzy inference system, which models
the individual parameter dependencies and further
decomposes the operating points into local operat-
ing points which are then represented as local neu-
ral or fuzzy models. Furthermore all models have
to be put in an adaptive structure that will be able
to decide, which model to use for certain situational
frame. The modular architecture of such system is
shown in the Fig. 7. A classifier in the form of
neural network represents the gate which gates out-
puts of individual models to give a correct predic-
tion. Use of this model allows us to simulate whole
operation of the engine with also highly non-linear
atypical situations such as startup and run down of
the engine. The model has only a single input pa-
rameter in the form of fuel flow input Qpal .

The inputs of the classifier neural network are
state variables resulting from the model, the only
input to the model is the fuel flow parameter. The
output of the network will be defined as a vector:

Ou = [x1,x2, . . . ,xn], (15)

where n is the number of situational model frames
and xi = {0;1}.

SITUATIONAL MODEL SIMULATIONS

We can evaluate the situational model in terms
of simulating the start-up of the engine, its stable
regime of operation and its run down, together with
the whole operation. The Fig. 12 shows the plot
of speed [rpm] of the engine during its startup with

three different startup levels of fuel flow input. The
individual sub-models for this frame [1] are in the
form of neural networks trained by scaled conjugate
gradient algorithm with the modification of time de-
layed inputs [15].

Fig. 12: The results of the start-up model for differ-
ent levels of input signal.

Fig. 13 shows simulation of a stable operation
of the engine with models in the form of TSK fuzzy
inference systems (FIS). More about the structure
of the models can be found in [1].

Fig. 13: One run of the engine by simulation of dif-
ferences of all variables in the stable regime.

The problematic area in this case is temperature
T4C, because by use of the FIS TSK model we are
not able to simulate overheating of the engine as
time of operation is not the input parameter.
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Table 1: MAE and MAAE errors of the model.

Parameter MAEi=1,2,...,15 MAAEi=1,2,...,15 MAPEi=1,2,...,15 MAAPEi=1,2,...,15

n [rpm] 67 275 0.14 0.61

T4C [◦C] 13 56 1.1 2.7

p2C [at] 0.065 0.071 1.7 1.88

Simulation of the whole operation of MPM20
engine is shown in the Fig. 14. The errors of sim-
ulation of 15 different measured runs of the engine
in its whole operation are shown in the Table 1. The
table shows means of mean absolute (MAE) and the
maximum absolute error (MAAE).

Fig. 14: One run of the engine by simulation of dif-
ferences of all variables in the stable regime.

We can see that the maximum absolute percent-
age error is about 1.7% for P2C parameter in the
whole dynamic range and the maximum percentage
absolute error is by 2.7% which gives way more ac-
curate predictions than linear models.

CONCLUSIONS
The object of a small turbojet engine MPM 20 gives
us an ideal test bed for research of methods in the
areas of non-linear dynamic systems modeling and
design of advanced control algorithms. Further re-
search will be done in the area of situational model-
ing that will be headed towards broadening of input
parameters of the situational model of the engine

and further refinement of situational classes desig-
nation. In this area we will be aimed at use of auto-
matic algorithms to find boundaries between situa-
tional frames within multivariate space of parame-
ters contrary to their setting by an expert.
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