Design of Control System Architecture for Intelligent Fixture

Ján Kušnír ^{1,*}, Jozef Brindza ¹, Michal Demko ¹, Filip Dominik ¹, Marek Vrabeľ ¹

Prototyping and Innovation Centre, Faculty of Mechanical Engineering, Technical University of Kosice, Slovak Republic, Park Komenského 12A, 042 00 Košice-Sever, Slovakia

Abstract: We present a compact architecture for an intelligent fixture aimed at stabilizing the milling of thin-walled aerospace parts. The system fuses multi-sensor inputs tri-axial accelerometers (5-30 kHz) for vibration/chatter, strain or dynamometer signals (1-5 kHz) for cutting/clamping loads, and low-rate pressure/temperature (≤ 100 Hz) for thermal/fixturing state with an "edge to cloud" computing stack. A Raspberry Pi 5 performs synchronized windowing (0.5-1.0 s, 50% overlap), time-frequency analysis (STFT/wavelets), and lightweight features (RMS, crest factor, band energies, relative wavelet energy, entropy). Unsupervised detectors (one-class models, LSTM autoencoders) provide fast on-device deviation alerts, while server services handle training/retuning, dashboards, a model registry, and over-the-air deployment. Telemetry uses MQTT for efficient streaming and OPC UA for typed information models, PTP (IEEE-1588) aligns timestamps. A private QoS-aware 5G link carries features and event-driven raw snippets, supporting a split control strategy, safety-critical actions stay local, and supervisory updates (feeds/speeds, ae/ap, clamping) close over 5G. Anticipated benefits include improved accuracy and surface integrity, reduced scrap/rework, and better adaptability across parts and machines. Validation will proceed via stability-lobe experiments and trials on aerospace-grade components, with a planned upgrade to simultaneous-sampling IEPE acquisition and Acoustic Emission sensing for higher bandwidth and earlier wear detection.

Keywords: Intelligent fixtures, thin-walled components, in-process monitoring, edge computing, private 5G, machining.

1. Introduction

In high-precision manufacturing sectors such as aerospace and space technology, fixtures are critical to achieving dimensional accuracy and surface integrity for thinwalled components. Traditional passive fixtures do not sense or adapt to dynamic changes (e.g., chatter, thermal drift, elastic deflection), which leads to errors, rework, and reduced efficiency. The goal of this paper is to present a concept architecture of an intelligent control system that integrates sensing, communication, and predictive algorithms to stabilize the process and enable data-driven decisions [1–5, 14].

Intelligent fixtures embed sensors and actuators to actively support compliant parts, suppress chatter, and reduce deformation by piezo-actuated elements and magnetorheological soft jaws exemplify these advances [1, 2, 8–10]. Concurrently, the IIoT and Industry 4.0 enable distributed, real-time monitoring with edge-to-cloud data pipelines. 5G provides low-latency, high-throughput backhaul suitable for shop-floor analytics [3, 4, 14, 15]. Existing reference architectures emphasize modular sensing (force/strain, vibration/Acoustic Emission, temperature), edge computing gateways for feature extraction and buffering, and server-side model training/serving for fleet-level learning [3, 5–7, 23].

2. System Architecture Design

We choose to combine tri-axial accelerometers (5–30 kHz) for vibration/chatter with dynamometer/ strain channels (1–5 kHz) for cutting and clamping loads, and pressure/temperature (≤100 Hz) to capture thermal and fixturing state. Tri-axial sensing is necessary because milling stability is directional. Coupling across x-y-z axes govern regenerative chatter, and single-axis signals can miss early crossaxis precursors. The 5-30 kHz span covers toothpassing fundamentals/sidebands and transient bursts that appear before visible instability [5, 32-34]. Strain/load channels disambiguate elasticdeflection-driven geometry error from genuine loss of dynamic stability, while low-rate pressure/ temperature contextualize slow drift recommended in in-process monitoring stacks [5, 7].

A Raspberry Pi 5 (8 GB) serves as the edge gateway. It provides sufficient compute and I/O to run concurrent Data Acquisition, windowing, time–frequency transforms and encrypted publish, aligning with edge-to-cloud guidance where compute near the source reduces latency/bandwidth and training remains centralized [3, 17].

For the initial iteration we decide use an NI USB-6001 (20 kS/s aggregate, 14-bit). It satisfies a minimum viable sampling plan—two vibration axes at ~10 kS/s plus strain/temperature for rapid bring-up, accepting constraints (no IEPE excitation, aggregate-rate ceiling, no built-in anti-alias filters) [16]. Our defined upgrade path is a simultaneous-sampling IEPE front end to preserve inter-channel phase for multi-axis stability analysis and enable Acoustic Emission sensing (typically 100–500 kS/s) for earlier tool-wear detection as shown in recent studies [5, 27]. The 5G modem we choose (Quectel RM530N-GL) provides private, Quality of Service-aware backhaul without tethering the fixture to wired infrastructure [18].

We plan streaming telemetry via MQTT and OPC UA. MQTT affords lightweight publish/subscribe of features and event-triggered raw snippets over constrained links. OPC UA contributes typed information models that integrate cleanly with OT systems and can be auto-generated to reduce integration cost [14, 15]. Local digital outputs support safety interlocks (e.g., feed-hold/ESTOP) and future active-fixture actuation with on-device latency, while server-side recommendations flow back to the edge/CNC for supervisory parameter

updates [3, 4, 14].

Synchronized acquisition and on-edge feature computation will start at the fixture. Compact features (and raw snippets on alarm) will be published via MQTT to the server for inference/confirmation. Decision-making follows a split the edge raises fast-path alarms for imminent chatter or deviation, the server issues supervisory recommendations (feeds/speeds/clamping) and manages the model lifecycle. Feedback is applied locally for safety-critical actions and through CNC/fixture controllers for supervisory adjustments. This arrangement is consistent with lloT best practice and preserves latency where it matters [14, 16, 24–27, 30, 31].

The edge node attaches to a private 5G network using the Quectel RM530N-GL (3GPP Rel-16, SA/ NSA), enabling QoS-aware uplink of features and event-driven raw windows. Latency budgets of ~10–50 ms are sufficient for supervisory control. Hard real-time inner loops (e.g., active damping) remain on-device. PTP (IEEE-1588) provides precise time synchronization across edge/server to align events, while MQTT and OPC UA carry data and typed models, respectively [4, 14, 18–21]. The proposed system architecture is shown in the Figure 1.

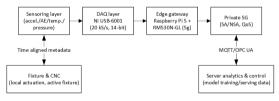


Figure 1: Sensing \rightarrow DAQ \rightarrow Edge \rightarrow Private 5G \rightarrow Server; paths.

Machining signals are non-stationary, so we use synchronized windows of 0.5–1.0 s with 50 % overlap to balance detection delay and spectral stability, followed by time-frequency front-ends (Short-Time Fourier Transform and wavelet packets) that expose evolving spectral content and transients [24, 25, 32– 34]. We extract Root Mean Square (overall energy/ load), crest factor (impulsiveness), band energies around tooth-passing/sidebands (canonical chatter markers), Relative Wavelet Energy (energy redistribution across scales typical of milling), and entropy (spectral complexity robust to operatingpoint shifts). These features are lightweight enough for edge execution and repeatedly shown to improve detectability versus fixed-band FFT alone [5, 24, 25, 27, 32–34]. For inference, unsupervised detectors

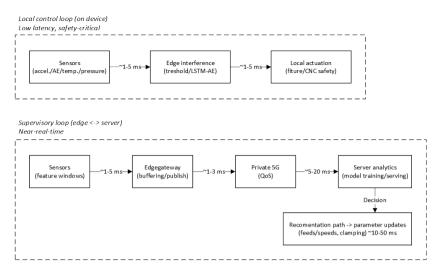


Figure 2: Local low-latency loop vs. near-real-time supervisory loop over 5G.

particularly LSTM autoencoders learn the manifold of "normal" and raise alarms on reconstruction/ prediction error; they have demonstrated strong performance on CNC and broader conditionmonitoring tasks [23, 28, 30, 31]. A simple one-class model serves as an ultra-low-latency fallback at the edge, while the server handles training/retuning on fleet data, drift monitoring, dashboards, and Over-the-Air deployment via a model registry with governance (signing, mTLS, audit, canary/rollback) [3, 36]. See Figure 2.

3. Results and Discussion

The proposed architecture is expected to improve dimensional accuracy and surface quality, reduce scrap and rework through earlier anomaly detection, widen stability windows with datainformed parameter adjustments, and enhance adaptability across part variants. It targets aerospace and space components, thin-walled structures, and high-precision manufacturing where dynamic effects dominate quality. For firms, the value lies in higher yield and OEE, faster troubleshooting via traceable telemetry, and a scalable analytics foundation that compounds learning across machines and parts.

4. Conclusions

We presented a concept for an intelligent fixture control architecture that fuses multi-sensor acquisition, edge preprocessing with private 5G backhaul, and server-side learning for deviation

prediction and adaptive optimization. Key elementsmodular sensing, MQTT/OPC UA integration, LSTM-autoencoder-based detection, and a hybrid edge-server split-align with current evidence and industrial constraints. Next steps are to prototype the universal control unit (Raspberry Pi 5 + NI USB-6001 + RM530N-GL) with PTP time-sync, run stability-lobe experiments to calibrate thresholds and quantify detection delay, validate in aerospace machining scenarios, and iterate toward closed-loop actuation and an IEPE/Acoustic Emission upgrade.

Acknowledgments

Funded by the EU NextGenerationEU through the Recovery and Resilience Plan for Slovakia under the project No. 09103-03-V05-00015.

Abbreviations

LSTM

IIoT	Industrial Internet of Things
5G	Fifth-Generation Mobile Network
3GPP	3rd Generation Partnership Project
SA / NSA	Standalone / Non-Standalone (5G)
PTP	Precision Time Protocol
IEEE-1588	IEEE Std 1588
MQTT	Message Queuing Telemetry Transport
OPC UA	Open Platform Communications Unified Architecture
OT	Operational Technology
CNC	Computer Numerical Control
ESTOP	Emergency Stop
IEPE	Integrated Electronics Piezo-Electric
FFT	Fast Fourier Transform

Long Short-Term Memory

CNN Convolutional Neural Network
OEE Overall Equipment Effectiveness
mTLS Mutual Transport Layer Security

QoS *Quality of Service*I/O *Input/Output*

kS/s *kilo-samples per second*

kHz *kilohertz*

References

- Möhring, H.-C.; Denkena, B.; Ahrens, M.; Hess, S. Intelligent Fixtures for High Performance Machining. Procedia CIRP 2016, 46, 383–390.
- Feng, Q.; Zhang, Z.; Li, L.; et al. Intelligent Soft Jaws for Clamping Complex Geometric Surfaces Using Active-Controlled MRF in a 3D-Printed TPU Cushion. Production Engineering 2025.
- 3. Li, Z.; Fei, F.; Zhang, G. Edge-to-Cloud IIoT for Condition Monitoring in Manufacturing Systems with Ubiquitous Smart Sensors. Sensors 2022, 22(15), 5901.
- Cheng, J.; Xu, C.; Chen, W.; Xu, X. 5G in Manufacturing: A Literature Review and Future Research. International Journal of Advanced Manufacturing Technology 2022, 120, 1301–1323.
- Shokrani, A.; Doğan, Ö.; Burian, A.; et al. Sensors for In-Process and On-Machine Monitoring of Machining Operations. CIRP Journal of Manufacturing Science and Technology 2024.
- Farooq, M.S.; et al. A Survey on the Role of Industrial IoT in Manufacturing. Sensors 2023.
- Bakker, O.J.; Papastathis, T.N.; Popov, A.A.; Ratchev, S. Active Fixturing: Literature Review and Future Research Directions. International Journal of Production Research 2013, 51(11), 3171–3190.
- Nee, A.Y.C.; Senthil Kumar, A.; Tao, Z.J. An Intelligent Fixture with a Dynamic Clamping Scheme. Proceedings of the IMechE Part B: Journal of Engineering Manufacture 2000, 214, 183–196.
- Wang, Y.F.; Wong, Y.S.; Fuh, J.Y.H. Off-line Modelling and Planning of Optimal Clamping Forces for an Intelligent Fixturing System. International Journal of Machine Tools & Manufacture 1999, 39(2), 253–271.
- Busboom, A.; et al. Automated Generation of OPC UA Information Models. Journal of Industrial Information Integration 2024.
- Kasiviswanathan, S.; et al. Machine-Learning- and Internetof-Things-Driven Techniques for Monitoring Tool Wear in Machining: A Review. Journal of Sensor and Actuator Networks 2024, 13(5), 53.
- 12. Teti, R.; Jemielniak, K.; O'Donnell, G.; Dornfeld, D. Advanced Monitoring of Machining Operations. CIRP Annals 2010, 59(2), 717–739.

- 13. Sürücü, O.; Bonab, H.R.; Şimşek, B. Condition Monitoring Using Machine Learning: A Review of the Current State and Future Trends. Expert Systems with Applications 2023, 224, 120037.
- Wang, W.-K.; Han, S.; Wang, C.; Zhang, J. Chatter Detection Methods in Machining Processes: A Comprehensive Review. International Journal of Machine Tools and Manufacture 2022, 185, 103707.
- Navarro-Devia, J.H.; Rimpault, X.; Biermann, D. Chatter Detection in Milling Processes — A Review on Signal Processing and Condition Classification. International Journal of Advanced Manufacturing Technology 2023, 129, 4441–4476.
- Hauptfleischová, B.; Hadas, Z.; Hrušecká, D.; et al. In-Process Chatter Detection in Milling: Comparison of the Robustness of Selected Entropy Methods. Journal of Manufacturing and Materials Processing 2022, 6(5), 125.
- Raspberry Pi Ltd. Raspberry Pi 5 Product Brief/ Documentation, 2024. From https://datasheets.raspberrypi. com/rpi5/raspberry-pi-5-product-brief.pdf
- National Instruments. NI USB-6001 Specifications. Technical Datasheet, Rev. 374369A. From https://www.ni.com/docs/ en-US/bundle/usb-6001-specs/resource/374369a.pdf
- Maia, L.H.A.; Fernandes, L.H.; da Silva, N.C.; et al. Real-Time Monitoring of Tool Wear with Acoustic Emission and STFT Techniques. Lubricants 2024, 12(11), 380.
- 20. Quectel. RM530N-GL 5G Module Datasheet, 2024. From https://www.guectel.com/product/5g-rm530n-gl/
- Wu, Y.; Ni, J.; Menq, C.-H. Feature Extraction and Assessment
 Using Wavelet Packets for Monitoring of Machining
 Processes. Journal of Manufacturing Science and
 Engineering 1996, 118(3), 367–372.
- Peng, Z.K.; Peter, W.T.; Chu, F.-L. A Review of the Application of Wavelet Transform in Machine Condition Monitoring and Fault Diagnosis. Mechanical Systems and Signal Processing 2004, 18(2), 199–221.
- 23. Zhang, Y.; Guo, X.; Wu, J.; et al. Tool Wear Condition Monitoring Based on Deep Learning and Time–Frequency Images. Sensors 2023, 23(10), 4595.
- 24. Xie, Z.; Hua, Y.; Tang, B.; et al. Data-Driven Unsupervised Anomaly Detection of Multi-Sensor Machine Tools via Hierarchical Augmented Autoencoders. Mechanical Systems and Signal Processing 2024, 210, 111237.
- Omole, S.; Hou, X.; Zolotarev, M.; et al. Using Machine Learning for Cutting Tool Condition Monitoring: A Review and Opportunities for Deep Learning. International Journal of Advanced Manufacturing Technology 2024, 120(7–8), 4293–4329.
- IEEE Std 1588-2019. IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement

- and Control Systems. From https://standards.ieee.org/ ieee/1588/6825/
- 27. Denzler, P.; et al. Static Timing Analysis of OPC UA PubSub. Technical University of Denmark, 2021.
- 28. Rezabek, F.; et al. Assessment of OPC UA PubSub at Scale Using TSN. Technical University of Munich, 2024.
- 29. Athar, A.; Liu, H.; Gopalsamy, S.; et al. Deep Learning-Based Anomaly Detection Using LSTM Autoencoders in CNC Machine Centers. PeerJ Computer Science 2024, 10, e2389.
- 30. Stouffer, K.; Pillitteri, V.; Lightman, S.; et al. NIST Special Publication 800-82 Rev. 3: Guide to Operational Technology (OT) Security. National Institute of Standards and Technology, 2023.
- 31. Çekik, R.; Toygar, Ö.; Karagöz, T. Deep Learning for Anomaly Detection in CNC Machine Vibration Data: A RoughLSTM-Based Approach. Applied Sciences 2025, 15(6), 3179.
- 32. Drew, D.; Kumar, S.; Mohan, S.; et al. Application of Machine Learning for Tool Condition Monitoring Using a Sensor-Integrated Tool Holder. Journal of Manufacturing Processes 2025, 96, 339-351.

