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Abstract: We present a compact architecture for an intelligent fixture aimed at stabilizing
the milling of thin-walled aerospace parts. The system fuses multi-sensor inputs tri-axial
accelerometers (5-30 kHz) for vibration/chatter, strain or dynamometer signals (1-5 kHz) for
cutting/clamping loads, and low-rate pressure/temperature (< 100 Hz) for thermal/fixturing state
with an “edge to cloud” computing stack. A Raspberry Pi 5 performs synchronized windowing
(0.5-1.0 s, 50% overlap), time-frequency analysis (STFT/wavelets), and lightweight features
(RMS, crest factor, band energies, relative wavelet energy, entropy). Unsupervised detectors
(one-class models, LSTM autoencoders) provide fast on-device deviation alerts, while server
services handle training/retuning, dashboards, a model registry, and over-the-air deployment.
Telemetry uses MQTT for efficient streaming and OPC UA for typed information models, PTP
(IEEE-1588) aligns timestamps. A private QoS-aware 5G link carries features and event-driven
raw snippets, supporting a split control strategy, safety-critical actions stay local, and supervisory
updates (feeds/speeds, ae/ap, clamping) close over 5G. Anticipated benefits include improved
accuracy and surface integrity, reduced scrap/rework, and better adaptability across parts and
machines. Validation will proceed via stability-lobe experiments and trials on aerospace-grade
components, with a planned upgrade to simultaneous-sampling IEPE acquisition and Acoustic
Emission sensing for higher bandwidth and earlier wear detection.

Keywords: Intelligent fixtures, thin-walled components, in-process monitoring, edge computing,
private 5G, machining.

1. Introduction

In high-precision manufacturing sectors such as aerospace and space technology,
fixtures are critical to achieving dimensional accuracy and surface integrity for thin-
walled components. Traditional passive fixtures do not sense or adapt to dynamic
changes (e.g., chatter, thermal drift, elastic deflection), which leads to errors, rework,
and reduced efficiency. The goal of this paper is to present a concept architecture of
an intelligent control system that integrates sensing, communication, and predictive
algorithms to stabilize the process and enable data-driven decisions [1-5, 14].

Intelligent fixtures embed sensors and actuators to actively support compliant
parts, suppress chatter, and reduce deformation by piezo-actuated elements and
magnetorheological soft jaws exemplify these advances [1, 2, 8-10]. Concurrently, the
lloT and Industry 4.0 enable distributed, real-time monitoring with edge-to-cloud data
pipelines. 5G provides low-latency, high-throughput backhaul suitable for shop-floor
analytics [3, 4, 14, 15]. Existing reference architectures emphasize modular sensing
(force/strain, vibration/Acoustic Emission, temperature), edge computing gateways for
feature extraction and buffering, and server-side model training/serving for fleet-level
learning [3, 5-7, 23].
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2, System Architecture Design

We choose to combine tri-axial accelerometers
(5-30 kHz) for vibration/chatter with dynamometer/
strain channels (1-5 kHz) for cutting and clamping
loads, and pressure/temperature (<100 Hz) to
capture thermal and fixturing state. Tri-axial sensing
is necessary because milling stability is directional.
Coupling across x—y-z axes govern regenerative
chatter, and single-axis signals can miss early cross-
axis precursors. The 5-30 kHz span covers tooth-
passing fundamentals/sidebands and transient
bursts that appear before visible instability [5,
32-34]. Strain/load channels disambiguate elastic-
deflection-driven geometry error from genuine
loss of dynamic stability, while low-rate pressure/
temperature contextualize slow drift recommended
in in-process monitoring stacks [5, 7].

A Raspberry Pi 5 (8 GB) serves as the edge
gateway. It provides sufficient compute and I/O
to run concurrent Data Acquisition, windowing,
time—frequency  transforms and  encrypted
publish, aligning with edge-to-cloud guidance
where compute near the source reduces latency/
bandwidth and training remains centralized [3, 17].

For the initial iteration we decide use an NI
USB-6001 (20 kS/s aggregate, 14-bit). It satisfies a
minimum viable sampling plan—two vibration
axes at ~10 kS/s plus strain/temperature for rapid
bring-up, accepting constraints (no IEPE excitation,
aggregate-rate ceiling, no built-in anti-alias filters)
[16]. Our defined upgrade path is a simultaneous-
sampling IEPE front end to preserve inter-channel
phase for multi-axis stability analysis and enable
Acoustic Emission sensing (typically 100-500 kS/s)
for earlier tool-wear detection as shown in recent
studies [5, 27]. The 5G modem we choose (Quectel
RM530N-GL) provides private, Quality of Service-
aware backhaul without tethering the fixture to
wired infrastructure [18].

We plan streaming telemetry via MQTT and OPC
UA. MQTT affords lightweight publish/subscribe
of features and event-triggered raw snippets
over constrained links. OPC UA contributes typed
information models that integrate cleanly with
OT systems and can be auto-generated to reduce
integration cost [14, 15]. Local digital outputs
support safety interlocks (e.g., feed-hold/ESTOP)
and future active-fixture actuation with on-device
latency, while server-side recommendations flow
back to the edge/CNC for supervisory parameter
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updates [3, 4, 14].

Synchronized acquisition and on-edge feature
computation will start at the fixture. Compact
features (andraw snippetsonalarm) will be published
via MQTT to the server for inference/confirmation.
Decision-making follows a split the edge raises fast-
path alarms for imminent chatter or deviation, the
server issues supervisory recommendations (feeds/
speeds/clamping) and manages the model lifecycle.
Feedback is applied locally for safety-critical actions
and through CNC/fixture controllers for supervisory
adjustments. This arrangement is consistent with
lloT best practice and preserves latency where it
matters [14, 16, 24-27, 30, 31].

The edge node attaches to a private 5G network
using the Quectel RM530N-GL (3GPP Rel-16, SA/
NSA), enabling QoS-aware uplink of features and
event-driven raw windows. Latency budgets of
~10-50 ms are sufficient for supervisory control.
Hard real-time inner loops (e.g., active damping)
remain on-device. PTP (IEEE-1588) provides precise
time synchronization across edge/server to align
events, while MQTT and OPC UA carry data and
typed models, respectively [4, 14, 18-21]. The
proposed system architecture is shown in the Figure
1.

Sensoring layer DAQ layer Edge gateway
(accel /AEftemp./ |—  NIUSB-6001 [—» RaspberryPiS+ [—|
pressure) (20 kSfs, 14-bit) RMS30N-GL (5g)

Private 5G
(SA/NSA, QoS)

Time aligned metadata MQTT/OPC UA

Fixture & CNC Server analytics & control
(local actuation, active fixture) (model training/serving data)

Figure 1: Sensing = DAQ — Edge — Private 5G = Server;
paths.

Machining signals are non-stationary, so we use
synchronized windows of 0.5-1.0 s with 50 % overlap
to balance detection delay and spectral stability,
followed by time-frequency front-ends (Short-Time
Fourier Transform and wavelet packets) that expose
evolving spectral content and transients [24, 25, 32—
34]. We extract Root Mean Square (overall energy/
load), crest factor (impulsiveness), band energies
around  tooth-passing/sidebands  (canonical
chatter markers), Relative Wavelet Energy (energy
redistribution across scales typical of milling), and
entropy (spectral complexity robust to operating-
point shifts). These features are lightweight enough
foredge execution and repeatedly shown toimprove
detectability versus fixed-band FFT alone [5, 24, 25,
27, 32-34]. For inference, unsupervised detectors
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Figure 2: Local low-latency loop vs. near-real-time supervisory loop over 5G.

particularly LSTM autoencoders learn the manifold
of "normal” and raise alarms on reconstruction/
prediction error; they have demonstrated strong
performance on CNC and broader condition-
monitoring tasks [23, 28, 30, 31]. A simple one-class
model serves as an ultra-low-latency fallback at the
edge, while the server handles training/retuning
on fleet data, drift monitoring, dashboards, and
Over-the-Air deployment via a model registry with
governance (signing, mTLS, audit, canary/rollback)
[3, 36]. See Figure 2.

3. Results and Discussion

The proposed architecture is expected to
improve dimensional accuracy and surface quality,
reduce scrap and rework through earlier anomaly
detection, widen stability windows with data-
informed parameter adjustments, and enhance
adaptability across part variants. It targets aerospace
and space components, thin-walled structures,
and high-precision manufacturing where dynamic
effects dominate quality. For firms, the value lies
in higher vyield and OEE, faster troubleshooting
via traceable telemetry, and a scalable analytics
foundation that compounds learning across
machines and parts.

4. Conclusions

We presented a concept for an intelligent
fixture control architecture that fuses multi-sensor
acquisition, edge preprocessing with private 5G
backhaul, and server-side learning for deviation
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prediction and adaptive optimization. Key elements-
modular sensing, MQTT/OPC UA integration,
LSTM-autoencoder-based detection, and a hybrid
edge-server split-align with current evidence and
industrial constraints. Next steps are to prototype the
universal control unit (Raspberry Pi 5 + NI USB-6001
+ RM530N-GL) with PTP time-sync, run stability-lobe
experiments to calibrate thresholds and quantify
detection delay, validate in aerospace machining
scenarios, and iterate toward closed-loop actuation
and an IEPE/Acoustic Emission upgrade.
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Abbreviations

lloT Industrial Internet of Things

5G Fifth-Generation Mobile Network
3GPP 3rd Generation Partnership Project

SA / NSA Standalone / Non-Standalone (56G)
PTP Precision Time Protocol

IEEE-1588 IEEE Std 1588

MQTT Message Queuing Telemetry Transport
OPC UA Open Platform Communications Unified Architecture
oT Operational Technology

CNC Computer Numerical Control

ESTOP Emergency Stop

IEPE Integrated Electronics Piezo-Electric
FFT Fast Fourier Transform

LSTM Long Short-Term Memory



CNN Convolutional Neural Network
OEE Overall Equipment Effectiveness
mTLS Mutual Transport Layer Security
QoS Quality of Service

l/O Input/Output

kS/s kilo-samples per second

kHz kilohertz
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