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Abstract: We present a compact architecture for an intelligent fixture aimed at stabilizing 
the milling of thin-walled aerospace parts. The system fuses multi-sensor inputs tri-axial 
accelerometers (5–30 kHz) for vibration/chatter, strain or dynamometer signals (1–5 kHz) for 
cutting/clamping loads, and low-rate pressure/temperature (≤ 100 Hz) for thermal/fixturing state 
with an “edge to cloud” computing stack. A Raspberry Pi 5 performs synchronized windowing 
(0.5–1.0 s, 50% overlap), time–frequency analysis (STFT/wavelets), and lightweight features 
(RMS, crest factor, band energies, relative wavelet energy, entropy). Unsupervised detectors 
(one-class models, LSTM autoencoders) provide fast on-device deviation alerts, while server 
services handle training/retuning, dashboards, a model registry, and over-the-air deployment. 
Telemetry uses MQTT for efficient streaming and OPC UA for typed information models, PTP 
(IEEE-1588) aligns timestamps. A private QoS-aware 5G link carries features and event-driven 
raw snippets, supporting a split control strategy, safety-critical actions stay local, and supervisory 
updates (feeds/speeds, ae/ap, clamping) close over 5G. Anticipated benefits include improved 
accuracy and surface integrity, reduced scrap/rework, and better adaptability across parts and 
machines. Validation will proceed via stability-lobe experiments and trials on aerospace-grade 
components, with a planned upgrade to simultaneous-sampling IEPE acquisition and Acoustic 
Emission sensing for higher bandwidth and earlier wear detection.

Keywords: Intelligent fixtures, thin-walled components, in-process monitoring, edge computing, 
private 5G, machining.

1. Introduction

In high-precision manufacturing sectors such as aerospace and space technology, 
fixtures are critical to achieving dimensional accuracy and surface integrity for thin-
walled components. Traditional passive fixtures do not sense or adapt to dynamic 
changes (e.g., chatter, thermal drift, elastic deflection), which leads to errors, rework, 
and reduced efficiency. The goal of this paper is to present a concept architecture of 
an intelligent control system that integrates sensing, communication, and predictive 
algorithms to stabilize the process and enable data-driven decisions [1–5, 14].

Intelligent fixtures embed sensors and actuators to actively support compliant 
parts, suppress chatter, and reduce deformation by piezo-actuated elements and 
magnetorheological soft jaws exemplify these advances [1, 2, 8–10]. Concurrently, the 
IIoT and Industry 4.0 enable distributed, real-time monitoring with edge-to-cloud data 
pipelines. 5G provides low-latency, high-throughput backhaul suitable for shop-floor 
analytics [3, 4, 14, 15]. Existing reference architectures emphasize modular sensing 
(force/strain, vibration/Acoustic Emission, temperature), edge computing gateways for 
feature extraction and buffering, and server-side model training/serving for fleet-level 
learning [3, 5–7, 23].
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2. System Architecture Design
We choose to combine tri-axial accelerometers 

(5–30 kHz) for vibration/chatter with dynamometer/
strain channels (1–5 kHz) for cutting and clamping 
loads, and pressure/temperature (≤100 Hz) to 
capture thermal and fixturing state. Tri-axial sensing 
is necessary because milling stability is directional. 
Coupling across x–y–z axes govern regenerative 
chatter, and single-axis signals can miss early cross-
axis precursors. The 5–30 kHz span covers tooth-
passing fundamentals/sidebands and transient 
bursts that appear before visible instability [5, 
32–34]. Strain/load channels disambiguate elastic-
deflection-driven geometry error from genuine 
loss of dynamic stability, while low-rate pressure/
temperature contextualize slow drift recommended 
in in-process monitoring stacks [5, 7].

A Raspberry Pi 5 (8 GB) serves as the edge 
gateway. It provides sufficient compute and I/O 
to run concurrent Data Acquisition, windowing, 
time–frequency transforms and encrypted 
publish, aligning with edge-to-cloud guidance 
where compute near the source reduces latency/
bandwidth and training remains centralized [3, 17].

For the initial iteration we decide use an NI 
USB-6001 (20 kS/s aggregate, 14-bit). It satisfies a 
minimum viable sampling plan—two vibration 
axes at ~10 kS/s plus strain/temperature for rapid 
bring-up, accepting constraints (no IEPE excitation, 
aggregate-rate ceiling, no built-in anti-alias filters) 
[16]. Our defined upgrade path is a simultaneous-
sampling IEPE front end to preserve inter-channel 
phase for multi-axis stability analysis and enable 
Acoustic Emission sensing (typically 100–500 kS/s) 
for earlier tool-wear detection as shown in recent 
studies [5, 27]. The 5G modem we choose (Quectel 
RM530N-GL) provides private, Quality of Service-
aware backhaul without tethering the fixture to 
wired infrastructure [18].

We plan streaming telemetry via MQTT and OPC 
UA. MQTT affords lightweight publish/subscribe 
of features and event-triggered raw snippets 
over constrained links. OPC UA contributes typed 
information models that integrate cleanly with 
OT systems and can be auto-generated to reduce 
integration cost [14, 15]. Local digital outputs 
support safety interlocks (e.g., feed-hold/ESTOP) 
and future active-fixture actuation with on-device 
latency, while server-side recommendations flow 
back to the edge/CNC for supervisory parameter 

updates [3, 4, 14].
Synchronized acquisition and on-edge feature 

computation will start at the fixture. Compact 
features (and raw snippets on alarm) will be published 
via MQTT to the server for inference/confirmation. 
Decision-making follows a split the edge raises fast-
path alarms for imminent chatter or deviation, the 
server issues supervisory recommendations (feeds/
speeds/clamping) and manages the model lifecycle. 
Feedback is applied locally for safety-critical actions 
and through CNC/fixture controllers for supervisory 
adjustments. This arrangement is consistent with 
IIoT best practice and preserves latency where it 
matters [14, 16, 24–27, 30, 31].

The edge node attaches to a private 5G network 
using the Quectel RM530N-GL (3GPP Rel-16, SA/
NSA), enabling QoS-aware uplink of features and 
event-driven raw windows. Latency budgets of 
~10–50 ms are sufficient for supervisory control. 
Hard real-time inner loops (e.g., active damping) 
remain on-device. PTP (IEEE-1588) provides precise 
time synchronization across edge/server to align 
events, while MQTT and OPC UA carry data and 
typed models, respectively [4, 14, 18–21]. The 
proposed system architecture is shown in the Figure 
1.

 

Figure 1: Sensing g DAQ g Edge g Private 5G g Server; 
paths.

Machining signals are non-stationary, so we use 
synchronized windows of 0.5–1.0 s with 50 % overlap 
to balance detection delay and spectral stability, 
followed by time–frequency front-ends (Short-Time 
Fourier Transform and wavelet packets) that expose 
evolving spectral content and transients [24, 25, 32–
34]. We extract Root Mean Square (overall energy/
load), crest factor (impulsiveness), band energies 
around tooth-passing/sidebands (canonical 
chatter markers), Relative Wavelet Energy (energy 
redistribution across scales typical of milling), and 
entropy (spectral complexity robust to operating-
point shifts). These features are lightweight enough 
for edge execution and repeatedly shown to improve 
detectability versus fixed-band FFT alone [5, 24, 25, 
27, 32–34]. For inference, unsupervised detectors 
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particularly LSTM autoencoders learn the manifold 
of “normal” and raise alarms on reconstruction/
prediction error; they have demonstrated strong 
performance on CNC and broader condition-
monitoring tasks [23, 28, 30, 31]. A simple one-class 
model serves as an ultra-low-latency fallback at the 
edge, while the server handles training/retuning 
on fleet data, drift monitoring, dashboards, and 
Over-the-Air deployment via a model registry with 
governance (signing, mTLS, audit, canary/rollback) 
[3, 36]. See Figure 2.

3. Results and Discussion
The proposed architecture is expected to 

improve dimensional accuracy and surface quality, 
reduce scrap and rework through earlier anomaly 
detection, widen stability windows with data-
informed parameter adjustments, and enhance 
adaptability across part variants. It targets aerospace 
and space components, thin-walled structures, 
and high-precision manufacturing where dynamic 
effects dominate quality. For firms, the value lies 
in higher yield and OEE, faster troubleshooting 
via traceable telemetry, and a scalable analytics 
foundation that compounds learning across 
machines and parts.

4. Conclusions 
We presented a concept for an intelligent 

fixture control architecture that fuses multi-sensor 
acquisition, edge preprocessing with private 5G 
backhaul, and server-side learning for deviation 

Figure 2: Local low-latency loop vs. near-real-time supervisory loop over 5G.  

prediction and adaptive optimization. Key elements-
modular sensing, MQTT/OPC UA integration, 
LSTM-autoencoder-based detection, and a hybrid 
edge-server split-align with current evidence and 
industrial constraints. Next steps are to prototype the 
universal control unit (Raspberry Pi 5 + NI USB-6001 
+ RM530N-GL) with PTP time-sync, run stability-lobe 
experiments to calibrate thresholds and quantify 
detection delay, validate in aerospace machining 
scenarios, and iterate toward closed-loop actuation 
and an IEPE/Acoustic Emission upgrade.
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Abbreviations
IIoT		  Industrial Internet of Things
5G		  Fifth-Generation Mobile Network
3GPP	 3rd Generation Partnership Project
SA / NSA	 Standalone / Non-Standalone (5G)
PTP		  Precision Time Protocol
IEEE-1588	 IEEE Std 1588
MQTT	 Message Queuing Telemetry Transport
OPC UA	 Open Platform Communications Unified Architecture
OT		  Operational Technology
CNC		 Computer Numerical Control
ESTOP	 Emergency Stop
IEPE		  Integrated Electronics Piezo-Electric
FFT	 	 Fast Fourier Transform
LSTM	 Long Short-Term Memory
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CNN		 Convolutional Neural Network
OEE		  Overall Equipment Effectiveness
mTLS	 Mutual Transport Layer Security
QoS		  Quality of Service
I/O	 	 Input/Output
kS/s		  kilo-samples per second
kHz	 	 kilohertz
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