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Abstract: The paper deals with modelling of nonlinear transient responses that 
occur in the technical and natural objects. In the field of non-linear phenomena are 
generated structures that have regular and chaotic nature. As a modelling tool, we 
used a modification of the logistic equation. Search and display of various structures 
was achieved when using parameter iterations of modified logistic equation. An 
iterative method in this case appears to be a very effective tool. The novelty of the 
method is in creating regular and chaotic structures in the time development of 
nonlinear functions.
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1. Introduction
	 Transient responses are present in all mechanisms. Transient response is generally 
defined as a physical change between two stabilzed states. In this article we will 
deal with special cases of transients that can be defined as a physical change 
between steady state and unstable (divergent) state. It is on the border of these 
states where processes, that can be described as chaotic and bifurcation processes, 
are taking place.
	 There is no physical system where non-linearity is not found. The question is 
to what extent the non-linearity of the system occurs during given conditions. 
Chaotic manifestation of nonlinearity appears in a measurable way on physical 
objects. Furthermore, it appears in the calculation schemes in analytical solution 
system. Finally, it also appears in the modeling of some recurrent relations.
1.1 Nonlinear models of physical objects
	 The first discovery of chaotic behaviour of nonlinear system was a Belousov–
Zhabotinsky reaction published in 1958 by Belousov as citric acid oxidation of 
bromate ions in the presence of cerium ions. The reaction was interesting in its 
visual effect where the system color was oscillatory changing between yellow and 
colorless solution [1].
	 Another example is nonlinearity occurrence in the resonance space of the 
oscillating system. This behavior has been revealed by analysis of seismic activity 
in the Lake Baikal region. In the Baikal region there is a extension of the Earth's 
crust and the formation of rift [2]. This process can be modeled by bifurcation in 
nonlinear resonance of hysteresis curve (Fig. 1)
	 It is a model of behavior that often occurs in the mechanical and electrical 
systems. In case of strong nonlinearity there is no analytical solution of the nonlinear 
equations. The behavior of the system can only be addressed by modeling. Non-
linear behavior of the mechanical system is reflected for example in the vibration 
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of rolling mill rolls [3]. In this case, the nonlinearity 
of cylinders’ movement was analytically solved by 
two perpendicular to each other planes (Fig. 2).

Fig. 1: Nonlinear resonance hysteresis. Arrows show direction of 

motion along the resonance curve in the case of slow change in 

excitation frequency. 

Fig. 2: The vertical-horizontal coupling dynamic model of rolling 

mill rolls. 
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	 System instability is created also by the splintery 
machining. The negative consequences are 
deterioration of the surface and rapid tool wear. 
This is an area of self-excited tool oscillations. Near 
the border between stability and instability is an 
area of bistability (Fig. 3). Near the stability border 
are arising unstable periodic cycles that due to 
outside interference may develop into stable 
periodic oscillation cycles [4], [5].
1.2 Nonlinearity of calculation procedures
	 Nonlinearity is a frequent calculation phenome-
non when describing dynamic structures. A typical 
example is the investigation of the stability of a 

Fig. 3: The calculated lower boundary of the unsafe (or bistable) 

zone (UZ), which is coloured dark grey embedded in the grey region 

of linearly stable stationary cutting. 

Fig. 4: (a) The mechanical discretization of on endloaded 

rod, (b) Global bifurcation diagram of elastic linkages for the  

N = 12-element chain. 
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bar strained for buckling. This task was first solved 
by Euler (1744). Differential equations describing 
the phenomenon are non-linear. Solution for 
continuous model leads to a smooth curve in phase 
space. The discrete model is giving even more 
interesting results [6]. In this case is considered a 
bar that consists of several segments. The resulting 
stability limit in phase space has a complex and 
simultaneously typical fractal nature (Fig. 4).

	 Fractals are the result of the structurally simple 
pendulum system too. For example, the double 
pendulum at a certain initial energy has no longer 
analytically defined trajectory [7], [8]. Poincaré map 
has a fractal nature (Fig. 5).
1.3 Nonlinearity of recurrent relations
	 The third investigation area of chaotic systems 
is creation of discrete mathematical model while 

( )a

( )b
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Fig. 5: The Poincaré sections for two rigid spring pendula. 

 

using the recurrent relations. The most famous 
model is the logistic function (1). This general 
formulation is the basis for the formation of simple 
ecological discrete models of population growth. 
The simplest example of a discrete nonlinear model 
is the logistic map, for which x changes from time n 
to time n+1 according to:

( )1( )x r x xn n n1
2= -+

	 Where r is a control parameter which is describing 
the growth rate of population. Recurrent equation 
exhibits chaotic behavior only for certain values of 
the control parameter r.
	 Convergence ratio of dubling the number of 
bifurcation nodes has universal character [9]. When 
parameter r = 3,569945672, number of bifurcation 
nods is infinite and the system behaves chaotically. 
Such bifurcation value of the parameter r is called 
accumulation point. Character behavior of the 
system determines the bifurcation diagram (Fig. 6).
	 Bifurcation diagram has the characteristics of 
fractal. The principal of the diagram interpretation 
is based on analysis of control parameter r changes. 
Nonlinear systems can have more parameters 
and each parameter changes the conditions for 
development of the system. In our case, parameter 
r represents the boundaries of system stability. 
Each nonlinear system on the border of stability 
recognized the following areas (Fig. 6):
aStable region - one cycle, analytical solution is possible.
aBifurcation region - regular cycles, analytical solution is possible.
aChaotic region - irregular cycles, analytical solution is not 

possible.
aUnstable region - closing of cycles, the system diverges.

Fig. 6: Bifurcation diagram of the logistic map. 
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	 By the multi parametric systems similar regions 
occur [10]. When parameters of recurrent equation 
are selected properly, the system seeks to stabilize 
at one point in which it oscillates. It's a stable 
region. To deflect the oscillations continues 
changing of parameters is needed. In the border 
area, the system enters the bifurcation area where 
regular structure are being formed and the system 
oscillates at several points. With further parameter 
changes the system will either diverge, or get into 
the area of chaotic structures. By chaotic structures 
the system creates oscillations in non-recurrent 
points. After further changes the system begins to 
diverge.

2. Modification of logistic equation
	 Logistic map is displayed relationship xn-xn-1 

and the logistics equation is always a parabolic 
course (Fig. 7). In the time domain disordered 
chaotic structure occurs, while connecting lines 
between steps are not shown. With any change of 
parameter r there in no change of parabola.

Fig. 7: (a) The time domain of logistic equation, (b) The logistic 

map (parameter r = 3.75). 
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	 The functional relationship is given as

( )2( )x f xn n1 =+

	 Modification of the relationship consists in 
adding a new recurrent step that takes into 
account the state in the previous step.

( )3( , )x f x xn n n1 1=+ -

	 To generate changes additional parameters may 
be used. The general formulation of the modified 
equation is as follows:

( )4( )x r x t x v xn n n n
g

1 1! $ $= -+ -

	 Each element of the modified equation plays a 
role in formation of the resulting graphic curve in 
the logistic map and the time domain. The most 
feasible method for generating structures in time 
domain is the use of parameters iteration. This makes 
it possible to generate a two dimensional plot on 
the boundary of system stability. The procedure is 
similar to the creation of the bifurcation diagrams 
of the primary logistic equation.
	 Parameters t, r allow to modify the function 
to structures that are regular in the time domain 
(belong to the bifurcation region) and they are on 
the borderline of stability and divergence.
	 The parameters v, g enable modification of the 
function to structures which are chaotic in the time 
domain and the logistic map too. These structures 
are on the edge of chaos and divergence.

3. Generation of regular structures -  
Experimental part

	 The modification consists in subtracting or 
adding element xn-1 in one step. If the parameter is 
n = 0 then only linear recurrent equation is formed:

( )5

( )6

( )x r x t xn n n1 1$= -+ -

or

( )x r x t xn n n1 1$= ++ -

	 It can be verified, that for any combination 
of input parameters the equation (6) has only 
divergent solution. Despite that, the equation (5) 
is oscillating when appropriate parameters are 

chosen. This oscillation is the base for the structures 
creation. Mutual parameter r, t ration defines 
the boundaries of convergence or divergence of 
recurrent equation (5). In case r t

1=  the equation 
(5) is exactly on the border of convergence and 
divergence (Fig. 8b).
3.1 Display of structures
	 The structure display of nonlinear states is as 
follows. In the all figures on the left are shown still 
5000 steps of element. It is function time domain 
without connecting lines between steps. In the 
second part of the figures on the right is the logistic 
map of the same function. There are still displayed 
1000 steps (Fig. 8).

Fig. 8: The structures of modificated logistic equation. (a) stable 

function (b) fuction on boundary (c) unstable function. 
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	 Structures have some interesting characteristics 
in terms of the number of steps per one cycle. 
We verifed experimentally that increasing the 
parameter also increases the number of steps per 
cycle. The smallest number of steps in the cycle is 
equal to 4. This we can see clearly when the r is close 
to zero (Fig. 9). For r = 0 function will be divergent 
because in this case t = ∞. Cycle with integer 
proportion of steps gives only simple picture of 
lines. The nearest integer value of dividing can be 
achieved by iterating parameter r until the point 
when in the time domain will appear parallel lines.
	 In the programming environment it is quite 
easy to find the stability limits with successive 
iterations of parameters and initial conditions. On 
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Fig. 9: The four steps in one cycle by parameters: x0=0.3   x1=0.72   

r=0.000001   t=1000000. 
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the resulting map can still be seen whether it is 
necessary to increase or decrease the parameter to 
achieve the threshold. On the basis of experiments, 
we assume that this is a general principle guiding 
the behavior of nonlinear systems. The proposed 
iterative method is fast and cannot be qualified 
as an accidental type of method as a trial – error 
method. But it is not analytical method. However, 
neither is the generation of chaotic waveforms in 
any system. Table 1 displays the parameter value r 
in integer steps ratios. The tendency of r parameter 
growth based on actions taken expresses the 
convergence to number two. For r≥2 the function 
diverges. Values in the table have been gained by 
r parameter iteration and based on this we have 
derived generally valid relationship between exact 
steps n and parameter r.

Table 1: The values of the parameter r in the whole-number 

proportion of the cycle.

Number of 
steps in cycle

r Mathematical expresion

4 0

5 0.618034  

6 1

7 1.24698

8 1.414214  

9 1.532089

10 1.618034  

11 1.682508

12 1.732051  

13 1.770912

14 1.801938

15 1.827091

2
5 1-

2

2
5 1+

3

	 From a geometric interpretation of a regular 
polygon we have derived an analytic function (7) 
which expresses relation between the number of 
steps n in the cycle and parameter r (Fig. 10).

( )7
sin cos

cos n nr
n n tg n

tg
2 2
2 2

$

$

$

r r r

r r

=
-

3.2 Examples of regular structures - bifurcations region
	 By not integer proportion of step the parameter 
r change, generates a range of regularly structures 
(Fig. 11), (Fig. 12), (Fig. 13). Initial conditions are 
unchanged. But change in the structure, can also 
be achieved by changing the initial conditions.

Fig. 10: The change of parameter r depending on the number of 

steps in the cycle.
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Fig. 11: Parameters: x0=0.3   x1=0.6   r=0.5   t=2.

Fig. 12: Parameters: x0=0.3   x1=0.6   r=0.525   t=1.904761905.
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Fig. 13: Parameters: x0=0.3   x1=0.6   r=0.52533   t=1.903565378.

 

4. Generation of chaotic structures
	 The general equation (4) can be simplified to 
the form of the exponential recurrent equation. 
Parameter n = 1 and t = 0.

( )8( )x r x xn n n
g

1 = -+

	 The role of the exponent g is to enable the 
equation to get to the border of chaos. In this 
sense, the chaos as a transition state between 
function convergence to the finite integer figures 
and divergence. For g = 2 it is a classic logistics 
equation. Chaotic waveforms are generated by 
the choice of parameters g = 3, g = 4 and higher 
values (Fig. 14). Special structures even in area of 
the logistic map can be made with the equation (4) 
(Fig. 15), (Fig. 16) and (Fig. 17).
4.1 Examples of chaotic structures
	 Although the structures in various parameter 
changes are different, the scenario process from 
regularity to the divergence is same. The size of 
the necessary change is defined by iteration of 
parameter. This change cannot be calculated. It's a 
chaotic system where every little thing can change 
the whole state. For example, if we maintain all 
the specified parameters and only change the 
calculation accuracy of the one decimal point, it 
changes the whole structure. The desired state can 
be achieved, but for other parameter values.

Fig. 14: Parameters: x0=0.6   r=2.6   g=3.

Fig. 15: Parameters: x0=0.1   x1=0.45684   r=1.2    t=0.833333333   

g=1/3.

Fig. 16: Parameters: x0=0.1   x1=0.3   r=1.2    t=0.833333333   g=1/5.

Fig. 17: Parameters: x0=0.1   x1=0.3   r=0.618034    t=1.618033959   

g=4.

5. Conclusion
	 Main contribution of this article is to point out 
that nonlinear systems on the border of stability 
report under the universal principle that can be 
modeled by modified logistic equation. It's just 
a question of picturing structures so that these 
principles of behavior are visible. There are very 
interested structures formed in the time domain of 
functions development. This display brings novelty 
to the chaos theory.
	 Based on the experience so far we affirm that every 
nonlinear system before it starts divergence passes 
through the zone bifurcation and consequently 
through the zone of chaotic behavior. Although in 
practice this fact is not clearly observed, it is due 
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to the fact that it is a quick process with the low 
number of occurrence. From the technical systems 
we rarely require to have unstable behavior. 
Moreover, the real technical objects are affected 
by the noise of random processes that effectively 
overlap chaotic manifestations. Moreover, the 
real technical objects are affected by the noise of 
random processes that effectively overlap chaotic 
manifestations.
	 The shapes of maps that arise in the transition 
regions have their universal nature in the time 
domain. In the bifurcations region they are the 
regular geometric shapes. In the chaos region they 
are the fractal formations that are by the gradual 
change of parameter alternating with regular 
formations. The most interesting forms, of course, 
occur at the limits, close to instability (divergence) 
regardless of which parameter is being changed 
by small additional values. In the last phase on 
the border of stability structures are alternating 
with bands of divergence. Finally, any change of 
parameters formes then no structure.
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