Acta Mechanica Slovaca 2025, 29(3):16-22 | DOI: 10.21496/ams.2025.026

Uterine Factor Infertility: Current Therapeutic Frontiers and the Promise of Uterine Bioengineering

Zuzana Trebuňová1, *, Erik Dosedla2, Jozef Živčák1, Peter Frankovský3
1 Technical University of Košice, Faculty of Mechanical Engineering, Department of Biomedical Engineering and Measurement, Letná 1/9, 04200, Košice-Sever, Slovakia
2 Faculty Hospital AGEL Košice-Šaca, Lúčná 57, 040 15 Košice-Šaca, Slovakia
3 Technical University of Košice, Faculty of Mechanical Engineering, Department of Applied Mechanics and Mechanical Engineering, Letná 1/9, 04200, Košice-Sever, Slovakia

Absolute uterine factor infertility (AUFI), resulting from congenital absence or non-functionality of the uterus, affects approximately 1 in 500 women of reproductive age and remains one of the most challenging forms of female infertility. While uterine transplantation has enabled successful pregnancies, it is associated with substantial limitations including donor scarcity, long-term immunosuppression, and ethical concerns. As a promising alternative, uterine tissue engineering aims to restore reproductive function using biocompatible scaffolds, often combined with stem or progenitor cells. This review summarizes current experimental and clinical evidence on scaffold-based and stem cell-driven approaches to uterine regeneration. Various cell sources have been explored, including mesenchymal stem cells (MSCs), embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs), with MSCs emerging as the most clinically feasible due to their immunomodulatory properties and accessibility. Scaffold types range from natural biomaterials (e.g., collagen) to synthetic polymers and decellularized extracellular matrices. Recent preclinical and clinical studies demonstrate promising outcomes in regenerating endometrial tissue and restoring fertility in conditions such as Asherman's syndrome. Nonetheless, challenges remain in standardization, long-term safety, and translation to widespread clinical use. Continued multidisciplinary research and advances in 3D bioprinting and personalized regenerative strategies may soon redefine the therapeutic landscape for AUFI.

Keywords: uterine factor infertility, uterine tissue engineering, uterine regeneration, stem cells, scaffold, uterine bioengineering, endometrial repair, 3D bioprinting.

Received: June 6, 2025; Revised: October 8, 2025; Accepted: October 29, 2025; Published: October 1, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Trebuňová, Z., Dosedla, E., Živčák, J., & Frankovský, P. (2025). Uterine Factor Infertility: Current Therapeutic Frontiers and the Promise of Uterine Bioengineering. Acta Mechanica Slovaca29(3), 16-22. doi: 10.21496/ams.2025.026
Download citation

References

  1. . Brännström, M., Kähler, P. D., Greite, R., Mölne, J., Díaz-García, C., Tullius, S. G. (2018). Uterus transplantation: a rapidly expanding field. Transplantation, 102(4), 569-577. Go to original source...
  2. . Hellström, M., Bandstein, S., Brännström, M. (2017). Uterine tissue engineering and the future of uterus transplantation. Annals of biomedical engineering, 45, 1718-1730. Go to original source...
  3. . Sallee, C., Margueritte, F., Marquet, P., Piver, P., Aubard, Y., Lavoue, V., Gauthier, T. (2022). Uterine factor infertility, a systematic review. Journal of clinical medicine, 11(16), 4907. Go to original source...
  4. . Bennet, N. (2014). 2014: news round up of the year. The Lancet, 384(9961), 2187-2188. Go to original source...
  5. . Place, E. S., George, J. H., Williams, C. K., Stevens, M. M. (2009). Synthetic polymer scaffolds for tissue engineering. Chemical society reviews, 38(4), 1139-1151. Go to original source...
  6. . Cossu, G., Birchall, M., Brown, T., De Coppi, P., Culme-Seymour, E., Gibbon, S., Wilson, J. (2018). Lancet Commission: Stem cells and regenerative medicine. The Lancet, 391(10123), 883-910. Go to original source...
  7. . Mao, A. S., Mooney, D. J. (2015). Regenerative medicine: Current therapies and future directions. Proceedings of the National Academy of Sciences, 112(47), 14452-14459. Go to original source...
  8. . Fitzsimmons, R. E., Mazurek, M. S., Soos, A., Simmons, C. A. (2018). Mesenchymal stromal/stem cells in regenerative medicine and tissue engineering. Stem cells international, 2018(1), 8031718. Go to original source...
  9. . Mahmood, R., Shaukat, M., Choudhery, M. S., Mahmood, R., Shaukat, M., Choudhery, M. S. (2018). Biological properties of mesenchymal stem cells derived from adipose tissue, umbilical cord tissue and bone marrow. AIMS Cell Tissue Eng, 2(2), 78-90. Go to original source...
  10. . Kotani, T., Saito, T., Suzuka, T., Matsuda, S. (2024). Adipose-derived mesenchymal stem cell therapy for connective tissue diseases and complications. Inflammation and Regeneration, 44(1), 35. Go to original source...
  11. . Zhang, K., Li, F., Yan, B., Xiao, D. J., Wang, Y. S., Liu, H. (2021). Comparison of the cytokine profile in mesenchymal stem cells from human adipose, umbilical cord, and placental tissues. Cellular Reprogramming, 23(6), 336-348 Go to original source...
  12. . Vats, A., Tolley, N. S., Bishop, A. E., Polak, J. M. (2005). Embryonic stem cells and tissue engineering: delivering stem cells to the clinic. Journal of the Royal Society of Medicine, 98(8), 346-350. Go to original source...
  13. . Demeterová, J., Trebuňová, M., Bačenková, D. (2024). Three-dimensional Bioprinting with the Use of Induced Pluripotent Stem Cells in Regenerative Medicine. Acta Mechanica Slovaca, 28(2). Go to original source...
  14. . Yamanaka, S. (2020). Pluripotent stem cell-based cell therapy-promise and challenges. Cell stem cell, 27(4), 523-531. Go to original source...
  15. . Mandai, M., Watanabe, A., Kurimoto, Y., Hirami, Y., Morinaga, C., Daimon, T., Takahashi, M. (2017). Autologous induced stem-cell-derived retinal cells for macular degeneration. New England Journal of Medicine, 376(11), 1038-1046. Go to original source...
  16. . Herberts, C. A., Kwa, M. S., Hermsen, H. P. (2011). Risk factors in the development of stem cell therapy. Journal of translational medicine, 9(1), 29. Go to original source...
  17. . Lee, A. S., Tang, C., Rao, M. S., Weissman, I. L., Wu, J. C. (2013). Tumorigenicity as a clinical hurdle for pluripote
  18. . Zheng, Y. L. (2016). Some ethical concerns about human induced pluripotent stem cells. Science and engineering ethics, 22(5), 1277-1284. Go to original source...
  19. . Pearl, J. I., Kean, L. S., Davis, M. M., Wu, J. C. (2012). Pluripotent stem cells: immune to the immune system?. Science translational medicine, 4(164), 164ps25-164ps25. Go to original source...
  20. . Yoshimasa, Y., Maruyama, T. (2021). Bioengineering of the uterus. Reproductive Sciences, 28(6), 1596-1611. Go to original source...
  21. . Trebuňová, M., & Šromovská, K. (2018). Assessment of Biocompatibility of Materials for Implantology on theProtein Level. Acta Mechanica Slovaca, 22(1), 34-39. Go to original source...
  22. . Xu, Y., Chen, C., Hellwarth, P. B., Bao, X. (2019). Biomaterials for stem cell engineering and biomanufacturing. Bioactive materials, 4, 366-379. Go to original source...
  23. . Jeong, H., Rho, J., Shin, J. Y., Lee, D. Y., Hwang, T., Kim, K. J. (2018). Mechanical properties and cytotoxicity of PLA/PCL films. Biomedical Engineering Letters, 8, 267-272. Go to original source...
  24. . Salthouse, D., Novakovic, K., Hilkens, C. M., Ferreira, A. M. (2023). Interplay between biomaterials and the immune system: Challenges and opportunities in regenerative medicine. Acta biomaterialia, 155, 1-18. Go to original source...
  25. . Miramini, S., Fegan, K. L., Green, N. C., Espino, D. M., Zhang, L., Thomas-Seale, L. E. (2020). The status and challenges of replicating the mechanical properties of connective tissues using additive manufacturing. Journal of the mechanical behavior of biomedical materials, 103, 103544. Go to original source...
  26. . Liu, L., Chen, H., Zhao, X., Han, Q., Xu, Y., Liu, Y., ... Wang, J. (2025). Advances in the application and research of biomaterials in promoting bone repair and regeneration through immune modulation. Materials Today Bio, 30, 101410. Go to original source...
  27. . Badylak, S. F., Taylor, D., Uygun, K. (2011). Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annual review of biomedical engineering, 13(1), 27-53. Go to original source...
  28. . Crapo, P. M., Gilbert, T. W., Badylak, S. F. (2011). An overview of tissue and whole organ decellularization processes. Biomaterials, 32(12), 3233-3243. Go to original source...
  29. . Wang, F., Cai, X., Shen, Y., & Meng, L. (2023). Cell-scaffold interactions in tissue engineering for oral and craniofacial reconstruction. Bioactive Materials, 23, 16-44. Go to original source...
  30. . Yoshimasa, Y., Maruyama, T. (2021). Bioengineering of the uterus. Reproductive Sciences, 28(6), 1596-1611. Go to original source...
  31. . Wong, M. L., Wong, J. L., Vapniarsky, N., Griffiths, L. G. (2016). In vivo xenogeneic scaffold fate is determined by residual antigenicity and extracellular matrix preservation. Biomaterials, 92, 1-12. Go to original source...
  32. . Zhao, G., Cao, Y., Zhu, X., Tang, X., Ding, L., Sun, H., Hu, Y. (2017). Transplantation of collagen scaffold with autologous bone marrow mononuclear cells promotes functional endometrium reconstruction via downregulating ΔNp63 expression in Asherman's syndrome. Science China Life Sciences, 60, 404-416. Go to original source...
  33. . Cao, Y., Sun, H., Zhu, H., Zhu, X., Tang, X., Yan, G., Hu, Y. (2018). Allogeneic cell therapy using umbilical cord MSCs on collagen scaffolds for patients with recurrent uterine adhesion: a phase I clinical trial. Stem cell research & therapy, 9, 1-10. Go to original source...
  34. . Olalekan, S. A., Burdette, J. E., Getsios, S., Woodruff, T. K., Kim, J. J. (2017). Development of a novel human recellularizedendometrium that responds to a 28-day hormone treatment. Biology of reproduction, 96(5), 971-981. Go to original source...
  35. . Padma, A. M., Tiemann, T. T., Alshaikh, A. B., Akouri, R., Song, M. J., Hellström, M. (2018). Protocols for rat uterus isolation and decellularization: applications for uterus tissue engineering and 3D cell culturing. Decellularized Scaffolds and Organogenesis: Methods and Protocols, 161-175. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.