Acta Mechanica Slovaca 2025, 29(2):32-37 | DOI: 10.21496/ams.2025.020

Effect of Mechanical Activation Frequency on the Reactivity of Phosphate Rock Mixtures in an Impact Mill

Maksym Skydanenko1, Ruslan Ostroha1, *, Jozef Bocko2, Mykola Yukhymenko1, Iryna Vaskina3, Hynek Roubík4
1 Sumy State University, 116, Kharkivska St., 40007, Sumy, Ukraine
2 Technical University of Kosice, 1/9 Letna St., 040 01 Kosice, Slovak Republic
3 Poznan University of Life Sciences, 50, Wojska Polskiego St., 60-637, Poznan, Poland
4 Czech University of Life Sciences Prague, 129, Kamýcká St., 165 00, Prague, Czech Republic

This article presents the results of an experimental investigation into the mechanical activation of a phosphate rock mixture using a single-rotor impact activator. The key indicators used to assess the effectiveness of activation were the content of water-soluble P2O5 and the heat of dissolution of phosphorite in hydrochloric acid. The obtained graphical data illustrate a clear improvement in these parameters with increasing rotational speed and frequency of mechanical impacts on the material particles. Analysis of the results revealed that both the content of accessible P2O5 and the heat of phosphorite dissolution increased by approximately 15-20% when the intensity of mechanical activation was enhanced under the specified grinding conditions.

Keywords: phosphate rock, mechanical activation, impact grinding, sustainable agriculture, resource efficiency, green technology, fertilizer quality, heat of dissolution.

Received: July 4, 2025; Revised: July 31, 2025; Accepted: August 3, 2025; Published: June 10, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Skydanenko, M., Ostroha, R., Bocko, J., Yukhymenko, M., Vaskina, I., & Roubík, H. (2025). Effect of Mechanical Activation Frequency on the Reactivity of Phosphate Rock Mixtures in an Impact Mill. Acta Mechanica Slovaca29(2), 32-37. doi: 10.21496/ams.2025.020
Download citation

References

  1. . McDowell, R.W., Pletnyakov, P. & Haygarth, P.M. (2024). Phosphorus applications adjusted to optimal crop yields can help sustain global phosphorus reserves. Nature Food, №5, 332-339. https://doi.org/10.1038/s43016-024-00952-9 Go to original source...
  2. . Fumio Saito (2012). Mechanical Activation of Solids by Grinding. Journal of the Society of Powder Technology, Japan. Volume 49, Issue 3, Pages 226-231. https://doi.org/10.4164/sptj.49.226 Go to original source...
  3. . Fernandez-Bertran, J.F. (1999). Mechanochemistry: An overview. Pure Appl. Chem., Vol. 71, №4б, Pages 581-586. http://dx.doi.org/10.1351/pac199971040581 Go to original source...
  4. . Baláž, P. (2008). Mechanochemistry in Nanoscience and Minerals Engineering; Springer: Berlin/Heidelberg, Germany, Pages 297-405. https://doi.org/10.1007/978-3-540-74855-7 Go to original source...
  5. . Yaneva, V.; Petrov, O.; Petkova, V. (2009). Structural and spectroscopic studies of mechanochemically activated nanosized apatite from Syria. Mater. Res. Bull., 44, Pages 693-699. https://doi.org/10.1016/j.materresbull.2008.06.004 Go to original source...
  6. . Jin, L.; Sun, L.; Wang, L.; Shi, Y. (2013). Studies on the mechanical activation of Huangmailing phosphorite. Res. J. Chem. Environ., 17, Pages S156-S162.
  7. . Tõnsuaadu, K.; Kaljuvee, T.; Petkova, V.; Traksmaa, R.; Bender, V.; Kirsimäe, K. (2011). Impact of mechanical activation on physical and chemical properties of phosphorite concentrates. Int. J. Miner. Process, Vol. 100, iss. 3-4, Pages 104-109. https://doi.org/10.1016/j.minpro.2011.05.005 Go to original source...
  8. . Petkova, V.; Koleva, V.; Kostova, B.; Sarov, S. (2015). Structural and thermal transformations on high energy milling of natural apatite. J. Therm. Anal. Calorim., 121, Pages 217-225. https://doi.org/10.1007/s10973-014-4205-5 Go to original source...
  9. . Fang, N., Liang, S., Dai, H., Xiao, H., Han, X., & Liu, G. (2022). The Improved Phosphorus Solubility of Mechanochemically Activated Phosphate Rock and Its Effect on Soil-Available Phosphorus in Weakly Acidic Soil. Sustainability, 14(13), 7869. https://doi.org/10.3390/su14137869 Go to original source...
  10. . Zhang, X.-m., Li, Y., Hu, C., He, Z.-q., Wen, M.-x., Gai, G.-s., Huang, Z.-h., Yang, Y.-f., Hao, X.-Y., & Li, X.-y. (2019). Enhanced Phosphorus Release from Phosphate Rock Activated withLignite by Mechanical Microcrystallization: Effects of Several Typical Grinding Parameters. Sustainability, 11(4), 1068. https://doi.org/10.3390/su11041068 Go to original source...
  11. . Fang N, Shi Y, Chen Z, Sun X, Zhang L, Yi Y (2019). Effect of mechanochemical activation of natural phosphorite structure as well as phosphorus solubility. PLoS ONE 14(11): e0224423. https://doi.org/10.1371/journal.pone.0224423 Go to original source...
  12. . Bazhirova, K., Zhantasov, K., Bazhirov, T., Kolesnikov, A., Toltebaeva, Z., & Bazhirov, N. (2024). Acid-Free Processing of Phosphorite Ore Fines into Composite Fertilizers Using the Mechanochemical Activation Method. Journal of Composites Science, 8(5), 165. https://doi.org/10.3390/jcs8050165 Go to original source...
  13. . Kubekova, S. N., Kapralova, V. I., Ibraimova, G. T., Raimbekova, A. S., & Ydyrysheva, S. K. (2022). Mechanically activated silicon-phosphorus fertilisers based on the natural and anthropogenic raw materials of Kazakhstan. Journal ofPhysics and Chemistry of Solids, (162), 110518. https://doi.org/10.1016/j.jpcs.2021.110518 Go to original source...
  14. . Dilshod Olzhaev, Nazira Akhmedova (2023). Improvement of methods for obtaining phosphorus fertilizers by mechanical activation. E3S Web of Conferences 420, 03017. https://doi.org/10.1051/e3sconf/202342003017 Go to original source...
  15. . SHAN Zhiwei, LI Guofeng, LI Fengjiu, LIU Liwei. (2020). Study on mechanism of activated phosphate rock powder in Hebei by ultrafine grinding[J]. CHINA MINING MAGAZINE, 29(12), Pages 109-115. https://doi.org/10.12075/j.issn.1004-4051.2020.12.012 Go to original source...
  16. . Ismailov B., Zakirov B., Kadirbayeva A., Koshkarbayeva S., Smailov B., Azimov A., Issabayev N. (2023). Methods for obtaining phosphorus-containing fertilizers based on industrial waste. Inorganics 11(6): 224. https://doi.org/10.3390/inorganics11060224 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.